Wellswolff5878
In this study, sarcosine metal-coded hydrogel magnetic molecularly imprinted polymer (Hydro-MeC-MMIP) has been fabricated and coupled to on-column derivatization capillary electrophoresis (CE). As a metal-coding approach, sarcosine-Cu2+-ligand (Sar-Cu2+-L) chelate complex was introduced as a template to overcome the problems associated with the fabrication of MMIP for a small molecule having limited functional groups such as sarcosine. To our best knowledge, it is the first time that methacrylamide (MA) coated Fe3O4 (Fe3O4@MA) with abounded reactive double-bound on the surface has been used as a magnetic core in the one-pot synthesis of MMIPs. As prepared, Hydro-MeC-MMIP was characterized by different microscopic, spectroscopic, and thermal gravimetric methods. Hydro-MeC-MMIP was used to extract and preconcentrate sarcosine in the urine sample with no treatment and dilution. Sarcosine was quantified by on-column derivatization capillary electrophoresis equipped with a photodiode array detector. A mixture of thirteen amino acids was separated with a total run time of 12 min. Three structural analogs, including alanine, sarcosine, and glycine, were significantly resolved. Under optimal experimental conditions, the method's detection and quantification limits were 9.93 and 33.10 ng mL-1, respectively. The linear range of 50-2000 ng mL-1 and 96% recovery, along with the relative standard deviation of 6.07% (n = 6) for the target amino acid, were obtained. This method provides a simple, low-cost, fast, and efficient tool for extracting and quantifying sarcosine in the urine. The present method can address inconsistency in evaluating sarcosine as a candidate biomarker for prostate cancer with a simple CE/UV; no need for a sophisticated detection system such as a mass spectrometer.A magnetic solid phase extraction (MSPE) coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD) methodology was developed for the determination of chloramphenicol (CP) and tetracycline (TET) antibiotic residues in milk samples. As a solid phase sorbent, C-nanofiber coated magnetic nanoparticles were synthesized and extensively characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Raman Spectroscopy and X-ray Powder Diffraction (XRD) analysis. Experimental variables of MSPE method for both antibiotic analytes were investigated and optimized systematically. After MSPE, the linear range for both the analytes (r2 > 0.9954) were obtained in a range 10.0-600.0 ng mL-1. The limit of detections (LODs) for CP and TET were 3.02 and 3.52 ng mL-1, respectively while RSDs % were below than 4.0%. Finally, the developed method based on MPSE-HPLC-DAD was applied to real milk samples to quantify the antibiotic residues. Recovery values for each antibiotic compound were found in the range of 94.6-105.4% (n = 3) by using spiked model solution.This review focuses on magnetic nanomaterials as sorbents for trace elements analysis in environmental and biological samples. The design and preparation of magnetic nanomaterials with specific functional groups for trace elemental analysis are summarized, along with relevant adsorption mechanism. The application of these magnetic sorbents in different operation modes for the quantification of trace elements and their species in environmental and biological samples are discussed. The trend of development in this field is also prospected.This paper presents the combination of wooden-tip electrospray ionization mass spectrometry (WTESI-MS) and multivariate pattern recognition methods (principal component analysis, PCA and partial least squares discriminant analysis, PLS-DA) for the rapid and reliable discrimination, via chemical fingerprints, of garlic origin. A total of 312 garlic samples grown in different countries (Brazil, China, Argentina, Spain, and Chile) were studied. The methodology was based on a direct sampling approach, which relies on loading the sample by penetrating the garlic cloves with a pre-wetted wooden tip, followed by direct prompt analysis by WTESI-MS. Thus, no sample preparation is needed, which prevents the degradation of important metabolites and increases the analytical throughput. Parameters that affects the WTESI were optimized and the best performance in terms of signal stability and intensity was achieved using the positive ion mode. Most of the ions in WTESI mass spectra were assigned to amino acids, sugars, organosulfur compounds, and lipids. The discriminative model showed good performance (accuracy rates between 81.9% and 98.6%) and enabled identifying diagnostic ions for garlic samples from different origins. The differentiation and classification of garlic origin is of major importance as this food flavoring product is widely consumed, with worldwide trade representing billions of dollars every year, and is very often the subject of fraud.The use of reclaimed water for agricultural irrigation is an increasingly common practice, which recently has found its own European regulatory frame. However, the partial removal of organic contaminants together with other xenobiotic substances in current wastewater treatment plants leads to the occurrence of residues of such pollutants in the treated effluents. Wastewater reclamation techniques are thus required to provide reclaimed water fitting the minimum quality standards set up for irrigation of crops intended for human consumption. This work describes the development and validation of a simple QuEChERS-based extraction and liquid chromatography quadrupole-linear ion trap mass spectrometry (LC-QqLIT-MS/MS) method for the simultaneous quantitative analysis of 55 pharmaceuticals and personal care products (PPCPs) in lettuces irrigated with treated wastewater and reclaimed water. The method showed good recovery rates (80-120%) and low detection limits (0.04-0.8 ng/g dw). In comparison with previous analyt by soil infiltration through reactive barriers, and clayey soil.Urease is an enzyme associated with the degradation of urea, an important nitrogen fertilizer in agriculture. Thus, this current report describes the use of a paper-based analytical device (UrePAD) designed to contain a microzone array for colorimetric determination of urease activity in soils in the absence/presence of potential enzyme inhibitors. The UrePAD can be used at the point-of-need (point-of-care), and it offers advantages such as low cost, simplicity in handling, low sample/reagent volumes, and no use of toxic reagents. ABT-199 concentration The acid-base indicator phenol red was used to monitor the urea hydrolysis reaction catalyzed by urease in the evaluated systems. The images were digitalized in a bench scanner, and the analysis was performed using Corel Draw X8 software. The device offered a LOD of 0.10 U mL-1 with linearity between 0.25 and 4.0 U mL-1 and a relative standard deviation ≤ 1.38%. UrePAD was tested in four soil samples of different characteristics and with eight urease inhibitors of varied classes. The results obtained through the proposed device did not differ statistically (95% confidence interval) from those employing the classic method based on the Berthelot reaction, thus indicating that UrePAD was effective for determining urease activity and screening inhibitors, besides showing the capacity to simplify fieldwork involving the application of urea in the soil.