Thomashardin8771
In an attempt to unravel functionality of the non-canonical PRC1.1 Polycomb complex in human leukemogenesis, we show that USP7 and TRIM27 are integral components of PRC1.1. USP7 interactome analyses show that PRC1.1 is the predominant Polycomb complex co-precipitating with USP7. USP7 inhibition results in PRC1.1 disassembly and loss of chromatin binding, coinciding with reduced H2AK119ub and H3K27ac levels and diminished gene transcription of active PRC1.1-controlled loci, whereas H2AK119ub marks are also lost at PRC1 loci. TRIM27 and USP7 are reciprocally required for incorporation into PRC1.1, and TRIM27 knockdown partially rescues USP7 inhibitor sensitivity. USP7 inhibitors effectively impair proliferation in AML cells in vitro, also independent of the USP7-MDM2-TP53 axis, and MLL-AF9-induced leukemia is delayed in vivo in human leukemia xenografts. We propose a model where USP7 counteracts TRIM27 E3 ligase activity, thereby maintaining PRC1.1 integrity and function. Moreover, USP7 inhibition may be a promising new strategy to treat AML patients.Controllable IR-reflection systems can be applied to displays, adaptive military camouflages, thermal managements, and many other fields. All trans-Retinal mouse However, current reported controllable IR-reflection systems suffer from utilizing rigid materials, complicated devices, or high working temperature/voltage, which are not suitable for their widespread applications toward soft systems. Herein, inspired by cephalopods, we demonstrate a facile and scalable method for adaptive IR reflection based on a Janus rubber film, which is composed of aluminum-coated microsheets (AMSs)/rubber composite top and a rubber only bottom. Expansion of the Janus rubber film causes random arrangement of AMSs to stay planar, resulting in the change from IR scattering to concentrated IR reflection. By fixing the Janus rubber films upon the arranged tubes, as-prepared arrays could display complex and changeable patterns by selectively pumping tubes. Being facile and of general validity, our strategies broaden the scope of future controllable IR reflecting applications for environmental IR camouflages and displays.The Everest region is characterized by its alpine glacial environment. In an effort to understand environmental change and tectonic activity, our team cored Taboche Lake, situated at 4,712 m along the western margin of the Ngozumpa Glacier. This research catalogs past earthquakes using geological records of the lake core that are important for the assessment of future earthquake hazards in the region and provides information for tectonic risk of glacial lake floods. Core grain size characteristics and internal sedimentary structures from computed tomographic scan were coupled with radiocarbon dating of organic matter preserved in the core to reconstruct the environmental history of the area. The 58-cm-long core consists of laminated silty sands and sandy silts with particle diameters less then 2 mm. The core records a syn-sedimentary deformational structure, folded sediments, rhythmically alternating dark- and light-colored laminations, and turbidites, which indicate coeval climatic and tectonic variations over the past ∼1,600 years.Multi-omic profiling of human peripheral blood is increasingly utilized to identify biomarkers and pathophysiologic mechanisms of disease. The importance of these platforms in clinical and translational studies led us to investigate the impact of delayed blood processing on the numbers and state of peripheral blood mononuclear cells (PBMC) and on the plasma proteome. Similar to previous studies, we show minimal effects of delayed processing on the numbers and general phenotype of PBMC up to 18 hours. In contrast, profound changes in the single-cell transcriptome and composition of the plasma proteome become evident as early as 6 hours after blood draw. These reflect patterns of cellular activation across diverse cell types that lead to progressive distancing of the gene expression state and plasma proteome from native in vivo biology. Differences accumulating during an overnight rest (18 hours) could confound relevant biologic variance related to many underlying disease states.Rare diseases are a fundamental issue in today's world, affecting more than 300 million individuals worldwide. According to data from Orphanet and OMIM, about 50-60 new conditions are added to the list of over 6,000 clinically distinct diseases each year, rendering disease diagnosis and treatment even more challenging. Ciliopathies comprise a heterogeneous category of rare diseases made up of over 35 distinct diseases, including Joubert syndrome (JBTS; OMIM 213300), that are caused by functional and structural defects in cilia. JBTS is an autosomal recessive condition characterized by a range of symptoms, including cerebellar vermis hypoplasia and poor muscle tone. There are now a total of 38 genes that cause JBTS, almost all of which encode protein products that are found in cilia and cilia-associated compartments, such as the basal body and transition zone. CEP41 is a JBTS-associated protein that is found in cilia and the basal body of mammals, but its localization in other ciliary organisms remains elusive. C. elegans is an excellent model organism for studying the molecular mechanisms of rare diseases like JBTS. We, therefore, decided to use C. elegans to identify the localization of CEP41. Our microscopy analysis revealed that CEPH-41(CEntrosomal Protein Homolog 41) not only localizes to cilia but is excluded from the distal segment of the amphid and phasmid cilia in C. elegans. Furthermore, we discovered a putative X-box motif located in the promoter of ceph-41 and the expression of ceph-41 is regulated by DAF-19, a sole Regulatory Factor X (RFX) transcription factor.Clinical data networks that leverage large volumes of data in electronic health records (EHRs) are significant resources for research on coronavirus disease 2019 (COVID-19). Data harmonization is a key challenge in seamless use of multisite EHRs for COVID-19 research. We developed a COVID-19 application ontology in the national Accrual to Clinical Trials (ACT) network that enables harmonization of data elements that are critical to COVID-19 research. The ontology contains over 50 000 concepts in the domains of diagnosis, procedures, medications, and laboratory tests. In particular, it has computational phenotypes to characterize the course of illness and outcomes, derived terms, and harmonized value sets for severe acute respiratory syndrome coronavirus 2 laboratory tests. The ontology was deployed and validated on the ACT COVID-19 network that consists of 9 academic health centers with data on 14.5M patients. This ontology, which is freely available to the entire research community on GitHub at https//github.