Skaaningvalenzuela9272

Z Iurium Wiki

Verze z 20. 11. 2024, 13:22, kterou vytvořil Skaaningvalenzuela9272 (diskuse | příspěvky) (Založena nová stránka s textem „koreanus in response xenobiotic-induced oxidative stress. The assembled B. koreanus genome will provide a better understanding on the molecular ecotoxicolo…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

koreanus in response xenobiotic-induced oxidative stress. The assembled B. koreanus genome will provide a better understanding on the molecular ecotoxicology in the view of molecular mechanisms underlying toxicological responses, particularly on xenobiotic detoxification processes in the rotifer B. koreanus. Herbicides are an integral part of global agricultural activity but can be advected into local drainages that can discharge to coastal marine systems. Herbicide runoff can impact coastal marine organisms, including those associated with coral reefs and coastal mangrove forests. In this study, the symbiotic sedentary jellyfish Cassiopea maremetens were exposed to analytical grade hexazinone to determine their sensitivity and potential for recovery after exposure to a press herbicide event of 14 days followed by a recovery period of matching duration. Bell surface area, photosynthetic yield (i.e. effective quantum yield, EQY), statolith count and zooxanthellae density were analyzed. Most metrics demonstrated significant decreases when exposed to higher concentrations of hexazinone, while EQY was significantly decreased at exposure concentrations from 31 μg/L hexazinone and above. In contrast, zooxanthellae density (cells/mm2) increased in the highest concentrations compared to control animals. At the end of the exposure period the EC50 for bell surface area, EQY, and statolith count were 176 μg/L, 81.96 μg/L, and 304.3 μg/L, respectively. Jellyfish were able to recover to similar start values for all measured metrics at the end of the 14-day recovery period, with EQY showing recovery by Day 7 of the recovery period. This study demonstrated that statolith counts as an estimate of age were not affected by herbicides. We conclude that the depressed metrics from herbicide related impacts of C. maremetens are effective indicators of a relatively recent herbicide perturbation in that the recovery timeframe for these jellyfish is relatively short. A new series of 2,4-dimethyl-1H-pyrrole-3-carboxamide derivatives bearing benzimidazole moiety was synthesized through a molecular hybridization approach and evaluated for in vitro anticancer activity by NCI-60 on leukemia, melanoma, lung, colon, CNS, ovarian, renal, prostate and breast cancer cell lines at a single dose (10 µM). Among all the synthesized conjugates, some derivatives showed more or less good activity even at such a small dose, while, compound 5-(1H-benzo[d]imidazol-2-yl)-N-(1-cyclohexylethyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide (8f) displayed significant antiproliferative activity specifically against MDA-MB human cancer cell lines. Compound 8f showed promising activity against MDA-MB-435 cell line of melanoma (Growth inhibition 62.46%) and MDA-MB-468 cell line of breast (Growth inhibition 40.24%). Computational ADME study qualified its significant physicochemical, pharmacokinetic and drug-likeness properties with good predicted oral bioavailability. Thus this new hybrid molecules would be useful for further anticancer drug development. A series of novel 4-butyl-arylpiperazine-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives were synthesized and evaluated for their 5-HT1A/D2 receptor affinity and serotonin reuptake inhibition. The compounds exhibited high affinity for the 5-HT1A receptor, (especially 4dKi = 0.4 nM) which depended on the substitution pattern at the phenylpiperazine moiety. From this series screen, compound 4c emerged with promising mixed receptor profiles for the 5-HT1A/D2 receptors and the serotonin transporter (Ki = 1.3 nM, 182 nM and 64 nM, respectively). A novel photoantimicrobial agent, namely 2-aminothiazolo[4,5-c]-2,7,12,17-tetrakis(methoxyethyl)porphycene (ATAZTMPo-gentamicin) conjugate, has been prepared by a click reaction between the red-light absorbing 9-isothiocyanate-2,7,12,17-tetrakis(methoxyethyl)porphycene (9-ITMPo) and the antibiotic gentamicin. PLB-1001 The conjugate exhibits submicromolar activity in vitro against both Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli, respectively) upon exposure to red light and is devoid of any cytotoxicity in the dark. The conjugate outperforms the two components delivered separately, which may be used to enhance the therapeutic index of gentamicin, broaden the spectrum of pathogens against which it is effective and reduce its side effects. Additionally, we report a novel straightforward synthesis of 2,7,12,17-tetrakis(methoxyethyl) porphycene (TMPo) that decreases the number of steps from nine to six. A new class of inhibitors of tubulin polymerization based on the 2-alkoxycarbonyl-3-(3',4',5'-trimethoxyanilino)indole molecular skeleton was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization and cell cycle effects. The results presented show that the methoxy substitution and location on the indole nucleus plays an important role in inhibition of cell growth, and the most favorable position for the substituent was at C-6. In addition, a small-size ester function (methoxy/ethoxycarbonyl) at the 2-position of the indole core was desirable. Also, analogues that were alkylated with methyl, ethyl or n-propyl groups or had a benzyl moiety on the N-1 indolic nitrogen retained activity equivalent to those observed in the parent N-1H analogues. The most promising compounds of the series were 2-methoxycarbonyl-3-(3',4'.5'-trimethoxyanilino)-5-methoxyindole 3f and 1-methyl-2-methoxycarbonyl-3-(3',4'.5'-trimethoxyanilino)-6-methoxy-indole 3w, both of which target tubulin at the colchicine site with antitubulin activities comparable to that of the reference compound combretastatin A-4. Herin we report the design, synthesis, full characterization and biological investigation of new 15-LOX/COX dual inhibitors based on 1,3-thiazolidin-4-one (15-lipoxygenase pharmacophore) and 1,3,4-thiadiazole (COX pharmacophore) scaffolds. This series of molecular modifications is an extension of a previously reported series to further explore the structural activity relationship. Compounds 3a, 4e, 4n, 4q, 7 and 8 capable of inhibiting 15-LOX at (2.74, 4.2, 3.41, 10.21, 3.71 and 3.36 µM, respectively) and COX-2 at (0.32, 0.28, 0.28, 0.1, 0.28 and 0.27 µM, respectively). The results revealed that binding to 15-LOX and COX is sensitive to the bulkiness of the substituents at the 5 positions. 15-LOX bind better with small substituents, while COXs bind better with bulky substituents. Compounds 3a, 4r and 4q showed comparable in vivo anti-inflammatory activity to the reference drug (celecoxib). The ulcer liability test showed no sign of ulceration which ensures the safe gastric profile. Docking study was performed to explore the possible mode of interaction of the new compounds with the active site of human 15-LOX and COX-2.

Autoři článku: Skaaningvalenzuela9272 (Vick Campbell)