Spenceweber6864
This study investigated the accumulation of debris at four sites, namely, Gebeng, Batu Hitam, Cherok Paloh, and Air Leleh, along the Pahang coastline, Peninsular Malaysia from March 2019 to February 2020. Plastic was the dominant debris (86.1%) and followed by cloth/fabric-based debris (6.0%), processed lumber debris (3.3%), rubber (2.7%), glass (1.5%), and metal (0.4%). The land-based debris (82.0%) was the major source of the deposition of marine waste. A statistically significant relationship was found between the seasonal variation and marine debris density in tidal and seasonal current along the Pahang coastline. In general, the Northeast Monsoon season had a higher amount of debris than the Southwest Monsoon season.Microplastics (MPs) patterns in a weakly-stratified estuary were investigated using a combined approach of observations and modeling. The study was conducted in the Guadalquivir River Estuary, which is of high environmental value, yet significantly altered by human activities. The study aims to contribute to understanding and quantifying the land-ocean transport of MPs. Mean concentrations of MPs in the estuary were 0.041itemsm-3, with maximum values up to 0.20itemsm-3, in agreement with the range reported in other estuaries. Polyethylene floating MPs were predominant. Tamoxifen cell line Relationships between increases in MP concentration and local rainfall events were identified in the middle estuary when there were no significant discharges from the head dam. Modeling results mimicked observations and revealed the effects of tidal straining, density-driven, and river flow-induced circulation on the net transport. Convergence of transports favors the MPs trapping in the vicinity of Doñana National Park, overlapping the location of the Estuarine Turbidity Maximum.Little is known about the combined effect of environmental factors and contaminants on commercially important marine species, and whether this effect differs by sex. In this study, blue mussels were exposed for seven days to both single and combined stressors (i.e., +3 °C elevated temperature and two environmentally relevant concentrations of the plastic softener DEHP, 0.5 and 50 μg/l) in a factorial design. Males were observed to be more sensitive to high temperature, demonstrated by the significant increase in out-of-season spawning gonads and higher gene expression of the antioxidant catalase and the estrogen receptor genes. On the other hand, while the gametogenesis cycle in females was more resilient than in males, DEHP exposure altered the estrogen-related receptor gene expression. We show that the combined stressors DEHP and increased temperature, in environmentally relevant magnitudes, have different consequences in male and female mussels, with the potential to impact the timing and breeding season success in Mytilus spp.Telomeres protect the coding sequence of chromosome ends and Telomere Length (TL) has been proposed as a biomarker of cellular aging, cumulative stress exposure and life-span in humans. With the aim to propose new biomarkers, a q-PCR protocol was adapted for the measurement of TL in the European flounder Platichthys flesus. The protocol was then applied in 2-year-old flounders from the Seine Estuary. The absolute TL in the flounder is 54 ± 13 kbp per genome (mean ± standard error). Considering relative or absolute TL, no correlation was observed with DNA damage and any of the measured contaminant concentrations (trace elements, metabolites of polycyclic aromatic hydrocarbons, polychlorobiphenyls, organochlorinated pesticides, polybrominated diphenyl ethers, perfluoroalkyl substances). Because sampling was limited, further investigations are required to state a possible impact of chemical pollution on flatfish telomeres. This is motivated by correlations observed with organochlorinated compounds when decreasing statistical significance (p ≤ 0.10).At present plastic residues has become grave threat to the environment. Microplastics are plastic residues with a size less then 5 mm, due to their small size it is very difficult to remove them from water bodies, sediments and air with available techniques. Nanoplastics are different in size range as nanoplastics are smaller than 1 μm in size. This review is an attempt to gather an insight towards microplastic and its associated point of concerns. The review will highlight some of the methods appropriate for microplastics sampling and techniques for its identification in environmental samples. Some of the sampling methods include sieving, filtration, visual sorting, digestion, density separation. While, identification techniques in practice are SEM-EDS, FTIR, NIR, Raman, NMR spectroscopy, etc. Still there is a need and scope for development of more economical and portable techniques in this direction.Nurdles, the pre-production plastic pellets, are a major source of plastic pollution in marine environments due to unregulated spills during production and transportation. We analyzed the types of plastics and associated organic pollutants on nurdles collected along the shoreline of Gulf of Mexico in Texas. Our results showed that the nurdles were made from polyethylene (81.9%) and polypropylene (18.1%). Polycyclic aromatic hydrocarbons (PAHs, 16 US EPA priority) and polychlorinated biphenyls (PCBs, 7 commercial congeners) sorbed to the nurdles were in concentration ranges of 1.6-14,700 ng/ g and 0-642 ng/ g, respectively. Heavily weathered nurdles tended to have higher concentrations of PAHs and PCBs than lightly weathered ones. The bioaccessibility of sorbed contaminants was evaluated using a simulated intestinal fluid. The results showed that the associated PAHs were more bioaccessible in lightly weathered nurdles (13.1 ± 2.3%) than heavily weathered one (5.3 ± 0.1%), and that no PCBs were bioaccessible. These findings are informative for toxicity evaluation and resource management of plastic debris in coastal environments.Plastic pollution is ubiquitous and not even remote protected islands are safe from it. Floating debris can adsorb toxic compounds that concentrate on their surface, being available to the animals that ingest them. For this reason, a baseline study of plastic pollution was conducted in the remote Revillagigedo Archipelago, in the Mexican Pacific Ocean. In 47 manta net samples an average of 4.8 plastics/1000m2 was found, 73% of the pieces being less then 5 mm. Polyethylene and polypropylene were the most common polymers found. The chemical analysis of organic pollutants revealed that organochlorine pesticides, polycyclic aromatic hydrocarbons and polychlorinated biphenyls are adsorbed on the plastics collected in the area. Filter feeding megafauna such as humpback whales, manta rays and whale sharks could ingest contaminated micro and macroplastics. Plastics were found also on the beach, where they are available to the ingestion by terrestrial animals, including endemic species endangered to extinction.