Duelundvillarreal6504
Continuous inhalation of coal dust among coal workers leads to a variety of disorders. The present study aims to evaluate the potential oxidative stress associated with coal dust generated from coal mining activities among exposed workers through the antioxidant enzyme system, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). buy 4EGI-1 In this study cohort, intensive coal mine workers were assessed for antioxidant variations. Blood samples were collected from dust-exposed workers (engaged in different activities at coal mines; n = 311) and residents of the same city (nonexposed, control group; n = 50). The workers' exposure to coal dust was categorized based on working area (administrative group, surface workers, underground workers), working hours (up to 8 h and more than 8 h), and time of service. The results showed significantly altered activities of SOD, CAT, and GSH among the whole exposed group and its categories compared to the control group. A significant difference was also observed between high- and low-exposure groups. Statistical analysis revealed a negative correlation between antioxidant activity (catalase and SOD) and coal dust levels. Besides, coal exposure was associated with the time of service, smoking status, and dietary habits. The findings of this study reveal higher oxidative stress among highly exposed coal mine workers (underground workers > surface workers > administrative group > nonexposed group), and longer working hours have more pronounced adverse effects on workers' health.Hierarchical, conductive, porous, three-dimensional (3D) carbon networks based on carbon nanotubes are used as a scaffold material for the incorporation of sulfur in the vapor phase to produce carbon nanotube tube/sulfur (CNTT/S) composites for application in lithium ion batteries (LIBs) as a cathode material. The high conductivity of the carbon nanotube-based scaffold material, in combination with vapor infiltration of sulfur, allows for improved utilization of insulating sulfur as the active material in the cathode. When sulfur is evenly distributed throughout the network via vapor infiltration, the carbon scaffold material confines the sulfur, allowing the sulfur to become electrochemically active in the context of an LIB. The electrochemical performance of the sulfur cathode was further investigated as a function of the temperature used for the vapor infiltration of sulfur into the carbon scaffolds (155, 175, and 200 °C) in order to determine the ideal infiltration temperature to maximize sulfur loading and minimize the polysulfide shuttle effect. In addition, the nature of the incorporation of sulfur at the interfaces within the 3D carbon network at the different vapor infiltration temperatures will be investigated via Raman, scanning electron microscopy/energy dispersive X-ray, and X-ray photoelectron spectroscopy. The resulting CNTT/S composites, infiltrated at each temperature, were incorporated into a half-cell using Li metal as a counter electrode and a 0.7 M LiTFSI electrolyte in ether solvents and characterized electrochemically using cyclic voltammetry measurements. The results indicate that the CNTT matrix infiltrated with sulfur at the highest temperature (200 °C) had improved incorporation of sulfur into the carbon network, the best electrochemical performance, and the highest sulfur loading, 8.4 mg/cm2, compared to the CNTT matrices infiltrated at 155 and 175 °C, with sulfur loadings of 4.8 and 6.3 mg/cm2, respectively.An efficient brucite@zinc borate (3ZnO·3B2O3·3.5H2O) composite flame retardant (CFR), consisting of an incorporated nanostructure, is designed and synthesized via a simple and facile electrostatic adsorption route. It has been demonstrated that this incorporated system can enhance the interfacial interaction and improve the mechanical properties when used in ethylene-vinyl acetate (EVA) composites. Meanwhile, in the process of burning, the CFR particles can successively migrate and accumulate to the surface of the burning zone, increasing the local concentration and rapidly generating a compact barrier layer through a condensed phase reinforcement mechanism even at a lower loading value. Especially, compared with the EVA/physical mixture (PM, with the same proportion of brucite and zinc borate), the heat release rate (HRR), the peak of the heat release rate (PHRR), the total heat released (THR), the smoke production rate (SPR), and mass loss are considerably reduced. According to this study, controlling the nanostructure of flame-retardant particles, to improve the condensed phase char layer, gives a new approach for the design of green flame retardants.Electrospun nanofibers are widely employed as cell culture matrices because their biomimetic structures resemble a natural extracellular matrix. However, due to the limited cell infiltration into nanofibers, three-dimensional (3D) construction of a cell matrix is not easily accomplished. In this study, we developed a method for the partial digestion of a nanofiber into fragmented nanofibers composed of gelatin and polycaprolactone (PCL). The PCL shells of the coaxial fragments were subsequently removed with different concentrations of chloroform to control the remaining PCL on the shell. The swelling and exposure of the gelatin core were manipulated by the remaining PCL shells. When cells were cultivated with the fragmented nanofibers, they were spontaneously assembled on the cell sheets. The cell adhesion and proliferation were significantly affected by the amount of PCL shells on the fragmented nanofibers.In this study, cellulose was obtained from sugarcane bagasse (SCB) and treated with xylanase to remove residual noncellulosic polymers (hemicellulose and lignin) to improve its dyeability. The cellulose fibers were dyed with natural dye solutions extracted from the heart wood of Ceasalpinia sappan Linn. and Artocarpus heterophyllus Lam. Fourier-transform infrared (FTIR) spectroscopy, Raman analysis, and whiteness index (WI) indicated successful extraction of cellulose by eliminating hemicellulose and lignin. The FTIR analysis of the dyed fibers confirmed successful interaction between natural dyes and cellulose fibers. The absorption (K) and scattering (S) coefficient (K/S) values of the dyed fibers increased in cellulose treated with xylanase before dyeing. Scanning electron microscopy (SEM) analysis showed that the surface of alkaline-bleached fibers (AB-fibers) was smoother than alkaline-bleached xylanase fibers (ABX-fibers), and the presence of dye particles on the surface of dyed fibers was confirmed by energy-dispersive spectrometry (EDS) analysis.