Lynchmackay1841
Exploring two-dimensional (2D) van der Waals (vdW) systems is at the forefront of materials of physics. Here, through molecular beam epitaxy on graphene-covered SiC(0001), we report successful growth of AlSb in the double-layer honeycomb (DLHC) structure, a 2D vdW material which has no direct analogue to its 3D bulk and is predicted to be kinetically stable when freestanding. The structural morphology and electronic structure of the experimental 2D AlSb are characterized with spectroscopic imaging scanning tunneling microscopy and cross-sectional imaging scanning transmission electron microscopy, which compare well to the proposed DLHC structure. The 2D AlSb exhibits a band gap of 0.93 eV versus the predicted 1.06 eV, which is substantially smaller than the 1.6 eV of bulk. We also attempt the less-stable InSb DLHC structure; however, it grows into bulk islands instead. The successful growth of a DLHC material here demonstrates the feasibility for the realization of a large family of 2D DLHC traditional semiconductors with characteristic excitonic, topological, and electronic properties.Ice adhesion on aerospace-relevant materials is both complex and not well understood. Measuring such adhesion and understanding the underlying physics involved require reliable testing techniques that can yield multifaceted data sets. The latter includes the surface morphology, that is, roughness, and its spatial correlation structure, resolving substrate-induced strain, and direct mechanical testing of adhesion. As part of a continuing investigation of ice adhesion on a relevant surface, we performed time-dependent stress ramps on aluminum surfaces. The temperature range explored, from -20 to -7 °C, allowed spontaneous icing and ice morphologies, namely, below or above -15 °C. Additionally, we characterized the spatial correlation surface roughness maps of the specimens. Our novel test protocol yields reproducible and high-precision results when compared with alternative methods reported throughout the literature. The stress-ramp test data using the proposed protocol show that the apparent average critical stress (proportional to the adhesion strength) depends on both stress-ramp rate and temperature. More specifically, the adhesion strength is higher for higher stress rates and increases with decreasing temperature. The stress-ramp test yields the full span of the time-dependent adhesive behavior of ice and particularly the upper bound. Additional stress-concentration analysis is needed to correct for this effect and thereby yield the critical stress rather than the average value produced by our procedure. The results in this work should aid to improve our understanding of ice adhesion mechanisms.The implementation of two-dimensional materials into memristor architectures has recently been a new research focus by taking advantage of their atomic thickness, unique lattice, and physical and electronic properties. Among the van der Waals family, Bi2O2Se is an emerging ternary two-dimensional layered material with ambient stability, suitable band structure, and high conductivity that exhibits high potential for use in electronic applications. In this work, we propose and experimentally demonstrate a Bi2O2Se-based memristor-aided logic. ZK-62711 By carefully tuning the electric field polarity of Bi2O2Se through a Pd contact, a reconfigurable NAND gate with zero static power consumption is realized. To provide more knowledge on NAND operation, a kinetic Monte Carlo simulation is carried out. Because the NAND gate is a universal logic gate, cascading additional NAND gates can exhibit versatile logic functions. Therefore, the proposed Bi2O2Se-based MAGIC can be a promising building block for developing next-generation in-memory logic computers with multiple functions.Hydrogel-based flexible strain sensors have shown great potential in body movement tracking, early disease diagnosis, noninvasive treatment, electronic skins, and soft robotics. The good self-healing, biocompatible, sensitive and stretchable properties are the focus of hydrogel-based flexible strain sensors. Dual network (DN) hydrogels are hopeful to fabricate self-healing hydrogels with the above properties. Here, multifunctional DN hydrogels are prepared via a combination of host-guest interaction of β-cyclodextrin and ferrocene with dynamic borate ester bonds of poly(vinyl alcohol) and borax. Carbon nanotubes are used to endow the DN hydrogels with good conductivity. The obtained DN composite hydrogels possess good biocompatibility, stretchability (436%), fracture strength (41.0 KPa), self-healing property (healing efficiency of 95%), and high tensile strain sensitivity (gauge factor of 5.9). The DN composite hydrogels are used as flexible strain sensors to detect different human motions. After cutting, the healed hydrogels also can monitor human motions and have good stability. In addition, the hydrogel sensors may track the respiratory movement of a pig lung in vitro. This work exhibits new ideas and approaches to develop multifunctional self-healing hydrogels for constructing flexible strain sensors.The development of more sustainable societies has become an urgent goal worldwide. Electrical batteries are currently seen as one of the most important energy storage technologies for the development of decarbonized societies. However, many lithium-ion battery manufacturers currently utilize cobalt, a toxic and hazardous mineral, in their batteries. Lithium-deficient manganese nickel oxide spinels are considered promising candidates owing to their high potential and environmental friendliness. Their electrochemical performance highly depends on their average and local structures, such as phase purities, lattice parameters, and cation sites. Thus, a synthesis protocol should be designed to control these structural parameters to improve their electrochemical performance. In this study, we controlled the average and local structures of Li0.9Mn1.6Ni0.4O4 spinels obtained by co-precipitation by optimizing their cooling rates. High-resolution techniques, including transmission electron microscopy, synchrotron X-ray diffraction, and Auger-composition analysis combined with density functional theory calculations, X-ray absorption spectroscopy, and electrochemical analysis, were used to understand the average and local structural variations and their effects on the electrochemical properties.