Moserknowles9437
Sodium perchlorate (NaClO4) and exogenous L-thyroxine (T4), two kinds of endocrine-disrupting chemicals (EDCs), mainly affect the circulating thyroid hormones, which regulate the initiation and rate of metamorphosis in amphibian. The aim of this study is to evaluate the potential role of EDCs in regulating the development of tadpoles and leptin signaling pathway of liver during the metamorphosis of Bufo gargarizans. There was completely opposite result of average development stage of tadpoles and morphological parameters between the NaClO4 and T4 exposure groups. Histological analysis revealed that NaClO4 and T4 exposure both caused liver injury, such as the decreased size of hepatocytes, atrophy of nucleus, increased melanomacrophage centres and disappearance of hepatocyte membranes. In addition, the results of RT-qPCR revealed that NaClO4 treatment significantly inhibited the transcript levels of genes related to thyroid hormone (D2, TRα and TRβ) and leptin signaling pathway (LepR, JAK1, JAK2, and TYK2), while there was an increase of mRNA expression of these genes in the liver of tadpoles administrated with T4 compared with control. This work lays an important foundation for assessing the risk of EDCs in relation to amphibian development during metamorphosis.Rice (Oryza sativa L.) productivity is greatly affected by soil salinity and melatonin (MLT) has long been recognized as a positive molecule that can alleviate the damage caused by salt. Here, the role of nitric oxide (NO) in the regulation of salt tolerance by MLT was investigated in rice. MLT pretreatment increased the fresh and dry weight of rice seedlings under salt stress. Its beneficial effects include less relative electrolyte leakage (REL) and better K+/Na+ homeostasis. MLT increased the activity of nitric oxide synthase (NOS). The polyamines (PAs) content and the utilization of arginine were also increased, thereby increasing NO content in salt-stressed rice seedlings. Pharmacological approach showed that NO, as a necessary downstream signaling molecule, was involved in the regulation of MLT on the K+/Na+ homeostasis of rice. Under salt stress, MLT improved the H+-pumps activities in plasma membrane (PM) and vacuole membrane (VM) in roots, MLT also increased the ATP content of rice roots by increasing the NO content of rice. Thus, the efflux of Na+ and the influx of K+ were promoted. When endogenous NO was scavenged, the regulation of K+/Na+ homeostasis by MLT was blocked. Therefore, MLT mediated K+/Na+ homeostasis of rice under salt stress by mediating NO.During the harvest period, tobacco workers are exposed to nicotine and it is known that absorption of the alkaloid via the leaves causes green tobacco sickness (GST). We investigated if GST and its symptoms are associated with DNA damage and alterations of the redox status. DNA damage was measured in lymphocytes of tobacco workers and controls (n = 40/group) in single cell gel electrophoresis assays. Exposure to nicotine was determined by plasma cotinine measurements, alterations of the redox status by quantification of the total antioxidant capacity (TEAC) and of thiobarbituric acid reactive substances (TBARS). The symptoms of GTS included nausea, abdominal cramps, headache, vomiting and dizziness, and 50% of the workers had more than one symptom. Cotinine levels were enhanced in the workers (111 ng/mL); furthermore, the extent of DNA damage was ca. 3-fold higher than in the controls. This effect was more pronounced in participants with GST compared to healthy nicotine exposed workers and increased in individuals with specific symptoms (range 22-36%). TBARS levels did not differ between workers and unexposed controls, while TEAC values were even increased (by 14.3%). Contact with nicotine present in tobacco leaves causes GTS and leads to damage of the DNA; this effect is more pronounced in workers with GTS symptoms and is associated with alterations of the redox status. Damage of the genetic material which was found in the workers may lead to adverse long-term effects that are caused by genomic instability such as cancer and accelerated ageing.In this study, ultrasound application at two different frequencies (37 or 80 kHz) and durations (15 or 30 min) was used as a pre-treatment for raw broiler breasts, and its effect on cooling, color, textural and sensory characteristics of cooked broiler breasts during vacuum cooling process was determined. The anterior and posterior parts of broiler breast halves were carefully removed, and these parts with a 20 mm width were named as the regions A and B, respectively. Both regions were vacuum-packed and pre-treated by ultrasound, followed by oven-cooking in aluminum foils, and cooling time, weight loss and temperature distribution characteristics were determined. Besides sensory and textural properties, the effect of the ultrasound pre-treatment on the pH, dry matter and ash contents and color (CIELAB) values of cooked breasts was determined. During vacuum cooling, ultrasound pre-treatment significantly reduced cooling time required to cool cooked broiler breasts from 85 °C to 12.5 °C, and the lowest values for the regions A and B were obtained for the 30 min ultrasound pre-treatment at 37 kHz as 12.72 and 14.61 min, respectively (p 0.05). In conclusion, ultrasound pre-treatment can be successfully used for the vacuum cooling process of broiler breasts for the reduction of cooling time, and a 30 min ultrasound pre-treatment at 37 kHz can provide relatively superior cooling characteristics.This present work reports the synthesis of Cellulose nanocrystals (CNCs) from cotton using an ultrasound-assisted acid hydrolysis. Further, the synthesized CNCs was comprehensively characterized using Fourier Transform Infrared Spectroscopy (FTIR) to analyze surface functional groups and X-ray diffraction (XRD) in studying structural characteristics. Folinic Thymidylate Synthase inhibitor Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA) have been used to study the thermal properties of CNCs. Morphology of CNCs was studied using a Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM). The crystallite size was found to be 10-50 nm using XRD data and the average particle size to be 221 nm using PSD analysis.