Haugaardmollerup3114
The prevalence of metabolic disorders has increased rapidly as such they become a major health issue recently. Despite the definition of genetic associations with obesity and cardiovascular diseases, they constitute only a small part of the incidence of disease. Environmental and physiological effects such as stress, behavioral and metabolic disturbances, infections, and nutritional deficiencies have now revealed as contributing factors to develop metabolic diseases. This study presents a multivariate methodology for the modeling of stress on metabolic syndrome (MES) patients. We have developed a supporting system to cope with MES patients' anxiety and stress by means of several biosignals such as ECG, GSR, body temperature, SpO2, glucose level, and blood pressure that are measured by a wearable device. We employed a neural network model to classify emotions with HRV analysis in the detection of stressor moments. We have accurately recognized the stressful situations using physiological responses to stimuli by utilizing our proposed affective state detection algorithm. We evaluated our system with a dataset of 312 biosignal records from 30 participants and the results showed that our proposed method achieved an average accuracy of 92% and 89% in distinguishing stress level in MES and other groups respectively. Both being the focus of an MES group and others proved to be highly arousing experiences which were significantly reflected in the physiological signal. Exposure to the stress in MES and cardiovascular heart disease patients increases the chronic symptoms. An early stage of comprehensive intervention may reduce the risk of general cardiovascular events in these particular groups. In this context, the use of e-health applications such as our proposed system facilitates these processes.The most severe form of kidney disease, End-Stage Renal Disease (ESRD) is treated with various forms of dialysis - artificial blood cleansing. Dialysis patients suffer many health burdens including high mortality and hospitalization rates, and symptomatic anemia a low red blood cell count as indicated by a low hemoglobin (Hgb) level. BIIB057 ESRD-induced anemia is treated, with variable patient response, by erythropoiesis stimulating agents (ESAs) expensive injectable medications typically administered during dialysis sessions. The dosing protocol is typically a population level protocol based on original clinical trials, the use of which often results in Hgb cycling. This cycling phenomenon occurs primarily due to the mismatch in the time between dosing decisions and the time it takes for the effects of a dosing change to be fully realized. In this paper we develop a recurrent neural network approach that uses historic data together with future ESA and iron dosing data to predict the 1, 2, and 3 month Hgb levels of patients with ESRD-induced anemia. The results of extensive experimentation indicate that this approach generates predictions that are clinically relevant the mean absolute error of the predictions is comparable to estimates of the intra-individual variability of the laboratory test for Hgb.Objective This work aims to provide a review of the existing literature in the field of automated machine learning (AutoML) to help healthcare professionals better utilize machine learning models "off-the-shelf" with limited data science expertise. We also identify the potential opportunities and barriers to using AutoML in healthcare, as well as existing applications of AutoML in healthcare. Methods Published papers, accompanied with code, describing work in the field of AutoML from both a computer science perspective or a biomedical informatics perspective were reviewed. We also provide a short summary of a series of AutoML challenges hosted by ChaLearn. Results A review of 101 papers in the field of AutoML revealed that these automated techniques can match or improve upon expert human performance in certain machine learning tasks, often in a shorter amount of time. The main limitation of AutoML at this point is the ability to get these systems to work efficiently on a large scale, i.e. beyond small- and medium-size retrospective datasets. Discussion The utilization of machine learning techniques has the demonstrated potential to improve health outcomes, cut healthcare costs, and advance clinical research. However, most hospitals are not currently deploying machine learning solutions. One reason for this is that health care professionals often lack the machine learning expertise that is necessary to build a successful model, deploy it in production, and integrate it with the clinical workflow. In order to make machine learning techniques easier to apply and to reduce the demand for human experts, automated machine learning (AutoML) has emerged as a growing field that seeks to automatically select, compose, and parametrize machine learning models, so as to achieve optimal performance on a given task and/or dataset. Conclusion While there have already been some use cases of AutoML in the healthcare field, more work needs to be done in order for there to be widespread adoption of AutoML in healthcare.Knowledge discovery from omics data has become a common goal of current approaches to personalised cancer medicine and understanding cancer genotype and phenotype. However, high-throughput biomedical datasets are characterised by high dimensionality and relatively small sample sizes with small signal-to-noise ratios. Extracting and interpreting relevant knowledge from such complex datasets therefore remains a significant challenge for the fields of machine learning and data mining. In this paper, we exploit recent advances in deep learning to mitigate against these limitations on the basis of automatically capturing enough of the meaningful abstractions latent with the available biological samples. Our deep feature learning model is proposed based on a set of non-linear sparse Auto-Encoders that are deliberately constructed in an under-complete manner to detect a small proportion of molecules that can recover a large proportion of variations underlying the data. However, since multiple projections are applied to the input signals, it is hard to interpret which phenotypes were responsible for deriving such predictions.