Carrbishop9719
The exact direction, of the surface energy characterized functional group of self-assembled monolayer (SAM), is proposed for achieving the enhanced electrical stability of indium gallium zinc oxide (IGZO) semiconductor thin film transistor (TFT). The SAM treatment, particularly at the SAM functional group having lower surface energy, makes oxygen molecules difficult to be adsorbed onto IGZO. And such an effect much improves positive bias stability (PBS) and clockwise hysteresis stability to the same tendency. For NH2 and CF3 functional group SAMs with surface energies of 49.4 mJ/m2 and 23.5 mJ/m2, respectively, the IGZO TFT PBS was improved from 2.47 V to 0.32 V after the SAM treatment and the IGZO TFT clockwise hysteresis was also enhanced from 0.23 V to 0.11 V without any deterioration of TFT characteristics. Employing lower surface energy functional group to the SAM, of same head group and body group, does passivate and protect the IGZO backchannel region from oxygen molecules in the atmosphere. Consequently, the enhanced electrical stability of IGZO TFT can be achieved by the simple and economic SAM treatment.
Report simple reference structure fabrication and validate the precise localization of subdural micro- and standard electrodes in magnetic resonance imaging (MRI) in phantom experiments.
Electrode contacts with diameters of 0.3 mm and 4 mm are localized in 1.5 T MRI using reference structures made of silicone and iron oxide nanoparticle doping. The precision of the localization procedure was assessed for several standard MRI sequences and implant orientations in phantom experiments and compared to common clinical localization procedures.
A localization precision of 0.41 ± 0.20 mm could be achieved for both electrode diameters compared to 1.46 ± 0.69 mm that was achieved for 4 mm standard electrode contacts localized using a common clinical standard method. The new reference structures are intrinsically bio-compatible, and they can be detected with currently available feature detection software so that a clinical implementation of this technology should be feasible.
Neuropathologies are increasingly dist-implantation electrode localization using MRI may be advantageous compared to the common alternative of CT-MRI image co-registration, as it avoids systematic localization errors associated with the co-registration itself, as well as brain shift and implant movement. Additionally, MRI provides superior soft tissue contrast for the identification of brain lesions without exposing the patient to ionizing radiation. Recent studies show that smaller electrodes and high-density electrode grids are ideal for clinical and research purposes, but the localization of these devices in MRI has not been demonstrated.Image-guided radiotherapy (IGRT) allows observation of the location and shape of the tumor and organs-at-risk (OAR) over the course of a radiation cancer treatment. Such information may in turn be used for reducing geometric uncertainties during therapeutic planning, dose delivery and response assessment. However, given the multiple imaging modalities and/or contrasts potentially included within the imaging protocol over the course of the treatment, the current manual approach to determining tissue displacement may become time-consuming and error prone. In this context, variational multi-modal deformable image registration (DIR) algorithms allow automatic estimation of tumor and OAR deformations across the acquired images. In addition, they require short computational times and a low number of input parameters, which is particularly beneficial for online adaptive applications, which require on-the-fly adaptions with the patient on the treatment table. However, the majority of such DIR algorithms assume that ay-adaptive registration model for precise contour propagation and dose accumulation, in areas showcasing considerable variations in anatomical properties.Hierarchical nanoflowers (NFs) of zinc oxide (ZnO) have been synthesized in the hexagonal wurtzite structure by a facile hydrothermal method. Selleck MS023 Polyaniline (PANI) has been prepared by the chemical oxidative polymerization method and incorporated with ZnO NFs by the chemisorption method. The potential of the synthesized nanostructures has been demonstrated for efficient photocatalytic degradation of methylene blue (MB) and photoelectrochemical water splitting. The PANI/ZnO nanocomposite has exhibited the enhanced photocatalytic activity which is ∼9 fold higher in comparison to pristine ZnO NFs and enhanced photocurrent density which is ∼16 fold higher than the ZnO photoanode. Importantly, ∼4 fold increment in the incident photon-to-current conversion efficiency (IPCE) is exhibited by PANI/ZnO, than that of ZnO photoanode. The remarkably enhanced photocatalytic and photoelectrochemical performance of PANI/ZnO nanocomposite is attributed to the availability of more interfacial sites facilitated by the hierarchical ZnO NFs, improved overall photoresponse due to its photosensitization with PANI and the resulting type-II heterojunction between them, which helps in the efficient separation of photogenerated charge carriers at the interface. A plausible reaction mechanism for the substantially improved performance of nanostructured PANI/ZnO towards MB degradation and water splitting has also been elucidated.A hierarchical superhydrophobic surface is prepared via a two-step boiling water immersion process and anodization of the treated aluminum substrate in a novel hydrophobic electrolyte of aluminum nitrate and stearic acid mixture at room temperature. The immersion time in boiling water had a significant influence on the morphology and durability of the sample. A pseudoboehmite coating is created on the aluminum surface during the boiling process, as revealed by the field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) spectrophotometer results. The energy-dispersive x-ray spectroscopy analysis confirmed the formation of hydrophobic coating surface after anodization. Also, the FE-SEM images and the atomic force microscopy (AFM) investigation proved the hierarchical nano-and microstructure stem from boiling and anodizing procedures, respectively. The successively boiled and anodized surface exhibited contact angle of about 155˚, sliding and hysteresis contact angles of less then 5˚ and 2˚, respectively.