Vinterdenton1444
In conclusion, these results provide detailed descriptions of the characteristics of the potential pathogens present in ballast water, document significant potential pathogens diversity, and indicate the importance of ballast holding time for potential pathogens lived in ballast water. Marine pollution due to disused industrial activities is a major threat to ecosystems and human health, for example through the effects of re-suspension of toxic substances that are present in contaminated sediments. SNDX-275 Here, we examined the effects of different re-suspension patterns of polluted sediments from the site of national interest Bagnoli-Coroglio, on the immune system of the sea urchin Paracentrotus lividus. An indoor experiment was set up exposing sea urchins for 34 days to such sediments and evaluating the effects of two patterns of water turbulence, mimicking natural storms at sea. One group of animals experienced an "aggregated" pattern of turbulence, consisting in two events, each lasting 2 days, separated by only 3 calm days, while a second group experienced two events of turbulence separated by 17 calm days (spaced pattern). At different times from the beginning of the experiment, coelomic fluid was collected from the animals and immune cells were examined for cell count and morphology, oxidatihe group exposed to the spaced pattern of turbulence. This work provides the first evidence of how sea urchins can respond to different re-suspension patterns of polluted sediments by modulating their immune system functions. The present data are relevant in relation to the possible environmental restoration of the study site, whose priorities include the assessment of the effects of marine pollution on local organisms, among which P. lividus represents a key benthic species. Phytoplankton in the upper oceans are exposed to changing light levels due to mixing, diurnal solar cycles and weather conditions. Consequently, effects of ocean acidification are superimposed upon responses to variable light levels. We therefore grew a model diatom Thalassiosira pseudonana under either constant or variable light but at the same daily photon dose, with current low (400 μatm, LC) and future high CO2 (1000 μatm, HC) treatments. Variable light, compared with the constant light regime, decreased the growth rate, Chl a, Chl c, and carotenoid contents under both LC and HC conditions. Cells grown under variable light appeared more tolerant of high light as indicated by higher maximum relative electron transport rate and saturation light. Light variation interacted with high CO2/lowered pH to decrease the carbon fixation rate, but increased particulate organic carbon (POC) and particularly nitrogen (PON) per cell, which drove a decrease in C/N ratio, reflecting changes in the efficiency of energy transfer from photo-chemistry to net biomass production. Our results imply that elevated pCO2 under varying light conditions can lead to less primary productivity but more PON per biomass of the diatom, which might improve the food quality of diatoms and thereby influence biogeochemical nitrogen cycles. The last decade has witnessed an immense demand for the development of new glucose biosensors. The research has mainly focused on achieving biocompatible and improved sensing capabilities as compared to the current technologies, which opens new directions toward more efficient glucose sensors. These sensing platforms have been continuously evolving with the contribution of novel materials, such as gold, platinum, metal alloys/adatom, graphene, composites and glucose-specific organic materials, owing to their electrocatalytic response to the oxidation of glucose. The chief motive of this review is to cover the recent advances on enzymatic and non-enzymatic glucose sensors evolved in the last four years. We discuss the sensor fabrication methods, the materials and nanostructures involved, the detection principles and the performance of the sensors in whole blood, saliva, urine or interstitial fluids in detail. This study develops a dual-channel colorimetric and surface-enhanced Raman scattering (SERS) strategy for detection of Cu2+ utilizing Ag-Au core-satellite nanostructures. 4-mercaptobenzoic acid (MBA) modified Ag nanoparticles (AgNPs@MBA) and 4-mercaptopyridine (Mpy) capped AuNPs (GNPs@Mpy) are first designed via metal-sulfur bonds, respectively. Benefiting from the Cu2+-triggered NPs self-aggregation, the dispersion of AgNPs-GNPs (AgNPs@MBA + GNPs@Mpy) is turned into AgNPs-Cu2+-GNPs core-satellite structures. Because of the presence of pyridyl nitrogen and carboxy group which have specific coordination ability towards Cu2+, induces a certain aggregation of NPs. As well it can be obviously discerned by the visual assay and easily captured by SERS analysis. The UV-Vis method exhibits good linearity in the ranging from 0.1 μM-200 μM for Cu2+, while SERS method displays good linear response from 1 pM to 100 μM. The detection limit of Cu2+ is 0.032 μM by colorimetry and 0.6 pM by SERS method, which is significantly lower than the acceptable limit of Cu2+ in drinking water (20 μM) set by the US EPA. Furthermore, colorimetric and SERS assay based on AgNPs-Cu2+-GNPs core-satellite structures is used to determine Cu2+ in various waters and soils, and the detection results are consistent with the traditional atomic analysis methods. This work offers a new method for detecting Cu2+ in environmental samples, and the plasmonic nanostructure provides new entry point for development of multiplexed sensing platform for in-field application. Rapid detection of Acinetobacter baumannii (AB) is critical for limiting healthcare-associated infections and providing the best treatment for infected individuals. Herein an integrated microfluidic device for AB diagnosis utilizing a new dual aptamer assay was developed for point-of-care (POC) applications; magnetic beads coated with AB-specific aptamers were used to capture bacteria, and quantum dots (QD) bound to a second aptamer were utilized to quantify the amount of bacteria with a light-emitting diode (LED)-induced fluorescence module integrated into the device. Within a rapid detection of 30 min, a limit of detection of only 100 colony-forming units (CFU)/reaction was obtained, and all necessary microfluidic devices were actuated by a combination of permanent magnets and electromagnets. The pumping rate of the micropump was 270 μL/min at only 10 V, which is amenable for POC applications with lower power consumption, and only 10 μL of sample and reagents were required. Given these attributes, an automatic POC device was demonstrated which could perform a dual aptamer assay to diagnose AB by using electromagnetically-driven microfluidic system.