Figueroacastillo8221

Z Iurium Wiki

Verze z 19. 11. 2024, 14:55, kterou vytvořil Figueroacastillo8221 (diskuse | příspěvky) (Založena nová stránka s textem „3 nm ± 0.1 and PdI 0.167 ± 0.005. The incorporation of MS into NE prevented phase separation and provided a homogeneous physical blending formulation, as…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

3 nm ± 0.1 and PdI 0.167 ± 0.005. The incorporation of MS into NE prevented phase separation and provided a homogeneous physical blending formulation, as confirmed by FTIR, TGA. NE-loaded films provided high drug incorporation in the films 94.08% ± 6.63%), and a smaller crystallinity degree in comparison with physical mixture films, suggesting a plasticizing effect of nano-sized droplets. Besides, mean weight, thickness, and moisture content were increased in NE-loaded films in comparison with chitosan-based control films. In vitro drug release from NE-loaded films was significantly higher than for physical mixture films, following Weibull and Korsmeyer-Peppas release kinetics models. The results suggest that NE-loaded chitosan film can increase the drug loading capacity of oil drugs and successfully control in vitro release, constituting a novel approach for transdermal drug delivery of NSAIDs.Activated carbon (AC) is widely used in water treatment, however, it has some technical disadvantages, such as its high cost and difficulty to recover. To overcome these drawbacks, AC particles have been encapsulated within a polymeric support, mainly chitosan and alginate-based. The use of these biological macromolecules results in composites with lower-cost, superior mechanical properties, and higher number of functional groups, advantages that have been attracted the attention of the scientific community. However, the number of publications is relatively low, demonstrating an important research gap yet to be investigated. Thus, this paper aims to review the recent studies concerning the use of chitosan, alginate and other macromolecules as AC immobilizing agents, describing the synthesis methods, characterization analyses and adsorption studies, focusing on the main advantages, disadvantages, gaps and future perspectives. Throughout the review it was verified that the composites were able to remove several water contaminants, mainly dyes and heavy metals, with high efficiency. Synergistic effects were detected, indicating the role of both polymers and AC, which increased the spectrum of contaminants capable of being adsorbed. Finally, it was observed a gap in column experiments, suggesting that future studies are essential to elucidate the applications in the industrial perspective.Microalgal biopolymers are studied mainly in terms of physico-chemical characterization, biological effects as well as possible biotechnological applications. Due to the significant antitussive, bronchodilator, anti-inflammatory and immunomodulatory effects of the previously isolated crude extracellular polysaccharide (EPS) produced by the cyanobacterium Nostoc sp., the purified biopolymer and its oligosaccharides, obtained after partial acid hydrolysis, were subjected to an in-depth NMR structural study. Analyses of the data obtained by chemical methods and NMR showed that the EPS backbone is composed of the repeating unit [→4)-β-D-Xylp-(1 → 4)-β-D-Glcp-(1 → 4)-α-L-Arap-(1 → 3)-β-D-Manp-(1→]n, in which about 60% of glucose units are substituted at C6 by uronic acids, in particular by the unusual unsaturated 3-O-lactyl-4-deoxy-α-erythro-hex-4-enopyranuronic acid, and to a lesser extent by β-D-glucuronic acid and 3-O-lactyl-β-D-glucuronic acid. These findings, structural features and identified biological effects, suggest the potential use of this biopolymer in the medical-pharmaceutical field.Adsorption of lysozyme on the dye-affinity nanofiber membranes was investigated in batch and dynamic modes. The membrane matrix was made of electrospun polyacrylonitrile nanofibers that were grafted with ethylene diamine (EDA) and/or chitosan (CS) for the coupling of Reactive Blue 49 dye. The physicochemical properties of these dye-immobilized nanofiber membranes (P-EDA-Dye and P-CS-Dye) were characterized microscopically, spectroscopically and thermogravimetrically. The capacities of lysozyme adsorption by the dye-affinity nanofiber membranes were evaluated under various conditions, namely pH, dye immobilized density, and loading flow rate. The adsorption of lysozyme to the dye-affinity nanofiber membranes was well fitted by Langmuir isotherm and pseudo-second kinetic models. P-CS-Dye nanofiber membrane had a better performance in the dynamic adsorption of lysozyme from complex chicken egg white solution. Phorbol12myristate13acetate It was observed that after five cycles of adsorption-desorption, the dye-affinity nanofiber membrane did not show a significant loss in its capacity for lysozyme adsorption. The robustness as well as high dynamic adsorption capability of P-CS-Dye nanofiber membrane are promising for the efficient recovery of lysozyme from complex feedstock via nanofiber membrane chromatography.

Chromosomal instability (CIN) is a carcinogenesis event that promotes metastasis and resistance to therapy by unclear mechanisms. Expression of the colon cancer-associated transcript 2 gene (CCAT2), which encodes a long noncoding RNA (lncRNA), associates with CIN, but little is known about how CCAT2 lncRNA regulates this cancer enabling characteristic.

We performed cytogenetic analysis of colorectal cancer (CRC) cell lines (HCT116, KM12C/SM, and HT29) overexpressing CCAT2 and colon organoids from C57BL/6N mice with the CCAT2 transgene and without (controls). CRC cells were also analyzed by immunofluorescence microscopy, γ-H2AX, and senescence assays. CCAT2 transgene and control mice were given azoxymethane and dextran sulfate sodium to induce colon tumors. We performed gene expression array and mass spectrometry to detect downstream targets of CCAT2 lncRNA. We characterized interactions between CCAT2 with downstream proteins using MS2 pull-down, RNA immunoprecipitation, and selective 2'-hydroxyl acylationfound that overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1 an activator of aurora kinase B. Strategies to target this pathway might be developed for treatment of patients with microsatellite stable colorectal tumors.

After birth, the immune system matures via interactions with microbes in the gut. The S100 calcium binding proteins S100A8 and S100A9, and their extracellular complex form, S100A8-A9, are found in high amounts in human breast milk. We studied levels of S100A8-A9 in fecal samples (also called fecal calprotectin) from newborns and during infancy, and their effects on development of the intestinal microbiota and mucosal immune system.

We collected stool samples (n= 517) from full-term (n= 72) and preterm infants (n= 49) at different timepoints over the first year of life (days 1, 3, 10, 30, 90, 180, and 360). We measured levels of S100A8-A9 by enzyme-linked immunosorbent assay and analyzed fecal microbiomes by 16S sRNA gene sequencing. We also obtained small and large intestine biopsies from 8 adults and 10 newborn infants without inflammatory bowel diseases (controls) and 8 infants with necrotizing enterocolitis and measured levels of S100A8 by immunofluorescence microscopy. Children were followed for 2.5 years and anthropometric data and medical information on infections were collected.

Autoři článku: Figueroacastillo8221 (Blankenship Tran)