Mcmahanstein2019

Z Iurium Wiki

Verze z 18. 11. 2024, 22:07, kterou vytvořil Mcmahanstein2019 (diskuse | příspěvky) (Založena nová stránka s textem „Quinidine, ajmaline, ivabradine and mexiletine differentially changed the time constant of recovery from inactivation, but all of them increased the time c…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Quinidine, ajmaline, ivabradine and mexiletine differentially changed the time constant of recovery from inactivation, but all of them increased the time constant of deactivation in SQT1-hiPSC-CMs. Conclusion The window current-reducing and deactivation-slowing effects may be important for the antiarrhythmic effect of ajmaline, ivabradine, quinidine and mexiletine in SQT1-cells. This information may be helpful for selecting drugs for treating SQT1-patients with hERG channel mutation.Mechanosensing and mechanotransduction are vital processes in mechanobiology and play critical roles in regulating cellular behavior and fate. There is increasing evidence that purinergic P2 receptors, members of the purinergic family, play a crucial role in cellular mechanotransduction. Thus, information on the specific mechanism of P2 receptor-mediated mechanotransduction would be valuable. In this review, we focus on purinergic P2 receptor signaling pathways and describe in detail the interaction of P2 receptors with other mechanosensitive molecules, including transient receptor potential channels, integrins, caveolae-associated proteins and hemichannels. In addition, we review the activation of purinergic P2 receptors and the role of various P2 receptors in the regulation of various pathophysiological processes induced by mechanical stimuli.The liver is a central organ in the human body, coordinating several key metabolic roles. The structure of the liver which consists of the distinctive arrangement of hepatocytes, hepatic sinusoids, the hepatic artery, portal vein and the central vein, is critical for its function. Due to its unique position in the human body, the liver interacts with components of circulation targeted for the rest of the body and in the process, it is exposed to a vast array of external agents such as dietary metabolites and compounds absorbed through the intestine, including alcohol and drugs, as well as pathogens. Some of these agents may result in injury to the cellular components of liver leading to the activation of the natural wound healing response of the body or fibrogenesis. Long-term injury to liver cells and consistent activation of the fibrogenic response can lead to liver fibrosis such as that seen in chronic alcoholics or clinically obese individuals. Unidentified fibrosis can evolve into more severe consequences over a period of time such as cirrhosis and hepatocellular carcinoma. It is well recognized now that in addition to external agents, genetic predisposition also plays a role in the development of liver fibrosis. An improved understanding of the cellular pathways of fibrosis can illuminate our understanding of this process, and uncover potential therapeutic targets. Here we summarized recent aspects in the understanding of relevant pathways, cellular and molecular drivers of hepatic fibrosis and discuss how this knowledge impact the therapy of respective disease.Introduction Drugs used in oncological diseases are frequently related to adverse drug reactions (ADR). Few studies have analyzed the toxicity of cancer treatments in children in real practice. Methods An observational, longitudinal and prospective study has been carried out in an Oncohematology Service of a tertiary hospital. During 2017, patients exposed to one or more drugs of a previously agreed list were identified and followed-up for at least 6 months each. Characteristics of ADR, incidence, causality and possible preventability, have been evaluated. Results 72 patients have been treated with at least one study drug, and 159 ADR episodes involving at least one of these drugs have been identified, with a total of 293 ADR. Most episodes required hospital admission (35.2%) or happened during the hospital stay (33%), and 91.2% were severe. Blood disorders were the most frequent ADR (96; 32.8%), related to thioguanine (42) and pegaspargase (39) mainly, followed by infections (86; 29.4%) related to thioguanine (32), pegaspargase (27), Erwinia asparaginase (14) and rituximab (13). Two ADR were unknown. Most ADR were dose-dependent or expectable (>90%). The global incidence of ADR was 3.1/100 days at risk (95% CI 2.7-3.5), with 3.5 ADR/100 days at risk with pegaspargase (95% CI 2.9-4.2), 1.2/100 days at risk with rituximab (95% CI 0.8-1.8) and 11.6/100 days at risk with thioguanine (95% CI 9.4-14.2). Controversial additional measures of prevention, other than those already used, were identified. Conclusion ADR are frequent in pediatric oncohematological patients, mainly blood disorders and infectious diseases. find more Findings regarding incidence and preventability may be useful to compare data between different centers and to evaluate new possibilities for action or prevention.Although miR-327 had a protective effect on cardiomyocytes as described previously, the potential mechanism still needs further exploration. The aim of this study was to investigate the role and mechanism of miR-327 on oxidative stress in myocardial ischemia/reperfusion injury (MI/RI) process. Oxidative stress and cardiomyocytes injury were detected in rat model of MI/RI, hypoxia/reoxygenation (H/R), and tert-butyl hydroperoxide (TBHP) model of H9c2 cells. In vitro, downregulation of miR-327 inhibited both H/R- and TBHP-induced oxidative stress, and suppressed apoptosis. Meanwhile, fibroblast growth factor 10(FGF10) was enhanced by miR-327 knocked down, followed by the activation of p-PI3K and p-Akt, and the translocation of Nrf2. However, miR-327 overexpression performed with opposite effects. Consistent with the results in vitro, downregulation of miR-327 attenuated reactive oxygen species (ROS) generation as well as intrinsic apoptosis, and alleviated I/R injury. In conclusion, inhibition of miR-327 improved antioxidative ability and myocardial cell survival via regulating the FGF10/Akt/Nrf2 pathway.Gegen-Qinlian decoction (GQD) is a classic traditional Chinese medicine (TCM) formula. It is composed of four TCMs, including Puerariae Lobatae Radix, Scutellariae Radix, Coptidis Rhizoma, and Glycyrrhizae Radix et Rhizoma Praeparata cum Melle. GQD is traditionally and clinically used to treat both the "external and internal symptoms" of diarrhea with fever. In this review, key words related to GQD were searched in the Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), and other databases. Literature published mainly from 2000 to 2020 was screened and summarized. The main constituents of GQD could be classified into eight groups according to their structures flavonoid C-glycosides, flavonoid O-glucuronides, benzylisoquinoline alkaloids, free flavonoids, flavonoid O-glycosides, coumarins, triterpenoid saponins, and others. The parent constituents of GQD that enter circulation mainly include puerarin and daidzein from Puerariae Lobatae Radix, baicalin and wogonoside from Scutellariae Radix, berberine and magnoflorine from Coptidis Rhizoma, as well as glycyrrhetinic acid and glycyrrhizic acid from Glycyrrhizae Radix et Rhizoma Praeparata cum Melle.

Autoři článku: Mcmahanstein2019 (Hodge Loomis)