Bankwillumsen1177

Z Iurium Wiki

Verze z 18. 11. 2024, 22:05, kterou vytvořil Bankwillumsen1177 (diskuse | příspěvky) (Založena nová stránka s textem „We found that more larger workers had mostly positive effects and more smaller workers had negative effects on worker production. Most of these effects wer…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We found that more larger workers had mostly positive effects and more smaller workers had negative effects on worker production. Most of these effects were only detected under low or fluctuating resource environments suggesting that the advantage of colonies with larger-bodied workers becomes more apparent under stressful conditions.We also demonstrate the wider ecological application of functional linear models. We highlight the advantages and limitations when considering these models, and how they are a valuable complement to many of these performance-based and manipulative experiments.As shown from several long-term and time-intensive studies, closely related, sympatric species can impose strong selection on one another, leading to dramatic examples of phenotypic evolution. Here, we use occurrence data to identify clusters of sympatric Sceloporus lizard species and to test whether Sceloporus species tend to coexist with other species that differ in body size, as we would expect when there is competition between sympatric congeners. We found that Sceloporus species can be grouped into 16 unique bioregions. Bioregions that are located at higher latitudes tend to be larger and have fewer species, following Rapoport's rule and the latitudinal diversity gradient. Species richness was positively correlated with the number of biomes and elevation heterogeneity of each bioregion. Additionally, most bioregions show signs of phylogenetic underdispersion, meaning closely related species tend to occur in close geographic proximity. Finally, we found that although Sceloporus species that are similar in body size tend to cluster geographically, small-bodied Sceloporus species are more often in sympatry with larger-bodied Sceloporus species than expected by chance alone, whereas large-bodied species cluster with each other geographically and phylogenetically. These results suggest that community composition in extant Sceloporus species is the result of allopatric evolution, as closely related species move into different biomes, and interspecies interactions, with sympatry between species of different body sizes. Our phyloinformatic approach offers unique and detailed insights into how a clade composed of ecologically and morphologically disparate species are distributed over large geographic space and evolutionary time.The invasion of freshwater ecosystems by non-native species can constitute a significant threat to native species and ecosystem health. Non-native trouts have long been stocked in areas where native trouts occur and have negatively impacted native trouts through predation, competition, and hybridization. This study encompassed two seasons of sampling efforts across two ecoregions of the western United States The Great Basin in summer 2016 and the Yellowstone River Basin in summer 2017. We found significant dietary overlaps among native and non-native trouts within the Great Basin and Yellowstone River Basin ecoregions. Three orders of invertebrates (Ephemeroptera, Trichoptera, and Diptera) composed the majority of stomach contents and were responsible for driving the observed patterns. Great Basin trout had higher body conditions (k), and non-native Great Basin trout had higher gut fullness values than Yellowstone River Basin trout, indicating a possible limitation of food in the Yellowstone River Basin. Native fishes were the least abundant and had the lowest body condition in each ecoregion. These findings may indicate a negative impact on native trouts by non-native trouts. We recommend additional monitoring of native and non-native trout diets, regular invertebrate surveys to identify the availability of diet items, and reconsidering stocking efforts that can result in overlap of non-native fishes with native cutthroat trout.This is the first study to document the genetic diversity of the white-tailed deer population on St. John, US Virgin Islands. The island population was founded by a small number of animals, has very limited hunting or predation, and recently experienced a reduction in size following an extended drought in 2015. Tebipenem Pivoxil DNA samples were collected from hair from 23 anesthetized adult deer (13 males, 10 females) ranging in age from 1 to 8 years (3.36 ± 1.9 years) and also from fecal DNA samples, for a total of 42 individuals analyzed for genetic diversity. The St. John deer data set averaged 4.19 alleles per marker and demonstrates the second lowest number of alleles (A) when compared to other populations of Odocoileus virginianus (4.19). Heterozygosity was similar to the other studies (0.54) with little evidence of inbreeding. To explain the level of heterozygosity and level of inbreeding within the St. John population, three hypotheses are proposed, including the effect of intrinsic biological traits within the population, a recent infusion of highly heterogeneous loci from North American populations, and a consistent level of immigration from a nearby island. Additional work is needed to further understand the genetic history of the St. John and regional deer populations.Community scientists have illustrated rapid declines of several aphidophagous lady beetle (Coccinellidae) species. These declines coincide with the establishment of alien coccinellids. We established the Buckeye Lady Beetle Blitz program to measure the seasonal occupancy of coccinellids within gardens across a wide range of landscape contexts. Following the Habitat Compression Hypothesis, we predicted that gardens within agricultural landscapes would be alien-dominated, whereas captures of natives would be higher within landscapes encompassing a high concentration of natural habitat.Within the state of Ohio, USA, community scientists collected lady beetles for a 7-day period across 4 years in June and August using yellow sticky card traps. All identifications were verified by professional scientists and beetles were classified by three traits status (alien or native), mean body length, and primary diet. We compared the relative abundance and diversity of coccinellids seasonally and determined if the distribut the need to understand how declining aphidophagous native species utilize forest habitats as a conservation priority.

Autoři článku: Bankwillumsen1177 (Fischer Brewer)