Jenningsklinge4890
The carboxymethylated inulin (CMI) nanoparticles prepared by the salt out method was demonstrated to harvest cellulolytic enzymes (Ez) directly from the clarified fermented broth of Trichoderma harzanium BPGF1. The formation of CMI nanoparticles and entrapment of Ez in CMI was confirmed by scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. A factorial design was developed to maximize enzymes recovery directly from the fermented broth. A maximum of 71.68 ± 8.61% cellulolytic enzymes was recovered using 20 mg/L inulin, 2 M sodium chloroacetate at 80 °C for 2 h. The resultant CMIEz nanohybrid displayed excellent activity in broad pH and temperature. Moreover, CMIEz was reusable for >30 cycles without losing efficiency. The real-time application of CMIEz was demonstrated by hydrolyzing acid pretreated corncob. High-pressure liquid chromatography revealed that the hydrolyzed corncob contained cellobiose, glucose, galactose, xylose, mannose, and arabinose. The results highlight that carbohydrate nanoparticles was useful in engulfing enzymes directly from the fermentation broth.In order to develop starch hemostatic materials with excellent hemostatic properties, the preparation of crosslinked porous starch (SPS) with sodium trimetaphosphate (STMP) as cross-linking agent was studied in this paper. When the solid-liquid ratio of porous starch (PS) was 30%, the mass ratio of cross-linking agent to starch was 0.04-1, and the SPS was crosslinked at pH 10.0, 55 °C for 50-60 min, the water absorption ratio and swelling ratio of SPS reach up to 160.5% and 239.1%, respectively. The characterization by infrared spectra, scanning electron microscopy and X-Ray diffraction spectra confirmed that the structure of SPS is similar to that of PS. The degradation experiment in vitro indicated that the degradation effect of PS was better than that of SPS. AZD1208 mw The whole blood coagulation kinetics experiment showed that SPS could promote the formation of blood clot, and the adsorption experiment of red blood cells in vitro showed that SPS could adsorb red blood cells. The average hemostasis time of SPS in tail amputation 1 cm and liver laceration were 181.03 s and 179.30 s.In the present study, commercially available six plants leave extracts such as Eucalyptus camaldulensis, Azadirachta indica, Murraya koenigii, Avicennia marina, Rosa rubiginosa and Datura stramonium were utilized for the production of copper nanoparticles (CuNPs). The characterization of particles was performed by UV/Vis, TEM, SEM, EDX and FTIR spectroscopy. TEM images showed the creation of CuNPs having mean size ranged from 48 to 29 nm corresponding to different plant extracts. SEM analysis showed the formation of spherical form of NPs. FTIR spectroscopy verified the availability of phytochemical components as they serves the reducing, covering and stabilizing assistant of the CuNPs. Antimicrobial ability of NPs was performed against various clinical pathogenic strains by Oxford cup method. The synthesized NPs indicated potent antibacterial activity, with relatively low values of MIC between 15 and 60 μg/mL. The antibacterial effect of each CuNPs was observed in the resulting order A. indica > D. stramonium > M. koenigii > R. rubiginosa > A. marina > E. camaldulensis. After 12 h exposure with A. indica synthesized CuNPs, the SEM images of S. typhi showed destruction of cell membrane and cell lysis was clearly observed after interaction with lipopolysaccharide. In conclusion, these obtained CuNPs could be precisely applied in treatment protocols without any covering or core-shell procedures.A total 68 types of marine algae oligosaccharides and polysaccharides were prepared and used to study the structure-activity relationship of oligosaccharides and polysaccharides in their interactions with fibroblast growth factors (FGF) 1 and 2. Factors considered include different types of algae, extraction methods, molecular weight, sulfate content and fractions. In the case of low molecular weight polysaccharide (SJ-D) from Saccharina japonica and its fractions eluting from anion exchange column, both 1.0 M NaCl fraction (SJ-D-I) and 2.0 M NaCl fraction (SJ-D-S) had stronger binding affinity than the parent SJ-D, suggesting that sulfated galactofucans represented the major tight binding component. Nuclear magnetic resonance showed that SJ-D-I was a typical sulfated galactofucan, composed of four units 1, 3-linked 4-sulfated α-L-fucose (Fuc); 1, 3-linked 2, 4-disulfated α-L-Fuc; 1, 6-linked 4-sulfated β-D-Gal and/or 1, 6-linked 3, 4-sulfated β-D-Gal. Modification by autohydrolysis to oligosaccharides and desulfation decreased the FGF binding affinity while oversulfation increased the affinity. The solution-based affinities of SJ-D-I to FGF1 and FGF2 were 69 nM and 3.9 nM, suggesting that SJ-D-I showed better preferentially binding to FGF1 than a natural ligand, heparin, suggesting that sulfated galactofucan might represent a good regulator of FGF1.Snakebites caused by Crotalus genus are the second most frequent in Brazil. Crotoxin is a beta-neurotoxin responsible for the main envenomation effects of Crotalus biting, while crotamine immobilizes the animal hind limbs, contributing to prey immobilization and to envenoming symptoms. As crotoxin and crotamine represent about 90% of Crotalus venom dry weight, these toxins are of great importance for antivenom therapy. In this sense, knowledge regarding the antigenicity/immunogenicity at the molecular level of these toxins can provide valuable information for the improvement of specific antivenoms. Therefore, the aims of this study are the identification of the B-cell epitopes from crotoxin and crotamine; and the characterization of the neutralizing potency of antibodies directed against the corresponding synthetic epitopes defined in the current study. Linear B-cell epitopes were identified using the Spot Synthesis technique probed with specific anti-C. d. terrificus venom horse IgG. One epitope of crotamine (F12PKEKICLPPSSDFGKMDCRW32) and three of crotoxin (L10LVGVEGHLLQFNKMIKFETR30; Y43CGWGGRGRPKDATDRCCFVH63 and T118YKYGYMFYPDSRCRGPSETC138) were identified. After synthesis in their soluble form, the peptides mixture correspondent to the mapped epitopes was entrapped in liposomes and used as immunogens for antibody production in rabbits. Anti-synthetic peptide antibodies were able to protect mice from the lethal activity of C. d. terrificus venom.