Bossenpettersson7528
Research on the photoreduction of CO2 often has been dominated by the use of sacrificial reducing agents. A pathway that avoids this problem would be the development of photocathodes for CO2 reduction that could then be coupled to a photoanodic oxygen evolution reaction. Here, we present the use of copper-substituted graphitic carbon nitride (Cu-CN) on a fluorinated tin oxide (FTO) electrode for the photoelectrochemical two-electron reduction of CO2 to CO as a major product (>95 %) and formic acid ( less then 5 %). The results show that at a potential of -2.5 V versus Fc\Fc+ the CO2 reduction activity of Cu-CN on FTO electrode improves by 25 % upon illumination by visible light with a faradaic efficiency of nearly 100 %. ABT-199 supplier Independently, X-ray photoelectron spectroscopy conclusively shows a pronounced increase in the electrical conductivity of the Cu-CN upon white light illumination under vacuum and a contactless measuring configuration. This photo-assisted charge mobility is shown to play a key role in the increased reactivity and faradaic efficiency for the reduction of CO2 .Biocompatible nano-antioxidants composed of natural molecules/materials, such as dopamine and melanin, are of great interest for diverse biomedical applications. However, the lack of understanding of the precise structure of these biomaterials and thus the actual dose of effective components impedes their advancement to translation. Herein, a strategy to mimic in situ melanin formation and explore its antioxidative applications is reported, by developing a PEGylated, phenylboronic-acid-protected L-DOPA precursor (PAD) that can self-assemble into well-defined nanoparticles (PADN). Exposure to oxidative species leads to deprotection of phenylboronic acids, transforming PADN to PEG-L-DOPA, which, similar to the biosynthetic pathway of melanin, can be oxidized and polymerized into an antioxidative melanin-like structure. With ultrahigh stability and superior antioxidative activity, the PADN shows remarkable efficacy in prevention and treatment of acute liver injury/failure. Moreover, the in situ structure transformation enables PADN to visualize damaged tissue noninvasively by photoacoustic imaging. Overall, a bioinspired antioxidant with precise structure and site-specific biological activity for theranostics of oxidative stress-related diseases is described.The diverse morphing behaviors of living creatures arise from their unlimited pathways. In contrast, the equilibrium-driven morphing pathways of common synthetic shape-shifting materials are very limited. For a shape-memory polymer (SMP), its recovery from the temporary shape(s) to the permanent shape typically requires external stimulation and follows a single fixed route. Herein, a covalently crosslinked SMP is designed with ample ureidopyrimidinone (UPy) supramolecular moieties in the network. The UPy units endow the SMP with strong time-temperature dependency, which is explored as a mechanism for spatio-temporal programming of autonomous shape-shifting pathways. In particular, the use of digitally controlled photothermal heating provides versatility in control via an off-equilibrium mechanism. In addition, cooling/heating across its glass transition introduces a locking/unlocking mechanism for its temporal morphing. The benefits of these unique features are demonstrated by multi-shape-transformation, an "invisible"-color-based clock, a time-temperature indicator, and sequence-programmable 4D printing.Clinical trials confirm the combination of indoleamine 2,3-dioxygenase (IDO) blockade and immunogenic chemotherapy represents a brilliant future in cancer therapy. However, it remains challenging to precisely activate chemo-immunotherapy in situ to avoid side effects from the systemic administrations and reverse the poor immunogenicity and immunosuppressive microenvironment in tumor sites. Herein, a hybrid nanomedicine ("RPMANB NPs") to co-deliver an IDO inhibitor (NLG919) and a chemotherapeutic prodrug to amplify the therapeutic benefits are designed. Attributed to the delicate surface engineering, the RPMANB NPs possess excellent pharmacokinetics and tumor accumulation. The loaded NLG919 are released inside cancer tissues/cells due to the collapse of the metal-organic framework platform triggered by the highly concentrated phosphate, reversing the immunosuppressive tumor microenvironment by suppressing IDO activity. The potent chemotherapeutic drug is precisely activated through a highly efficient plasmon-driven catalysis in the presence of near-infrared light, eliciting antitumor immunity by triggering immunogenic cell death and avoiding side effects through in situ activation of chemotherapy. In vivo studies demonstrate that the chemo-immunotherapy greatly suppresses the tumor growth by promoting intratumoral accumulation of cytotoxic T lymphocytes and downregulating regulatory T cells. This work establishes a robust delivery platform to overcome the current obstacles of tumor treatments by combining precisely activatable chemotherapy with immunotherapy.Billions of internet connected devices used for medicine, wearables, and robotics require microbattery power sources, but the conflicting scaling laws between electronics and energy storage have led to inadequate power sources that severely limit the performance of these physically small devices. Reported here is a new design paradigm for primary microbatteries that drastically improves energy and power density by eliminating the vast majority of the packaging and through the use of high-energy-density anode and cathode materials. These light (50-80 mg) and small (20-40 µL) microbatteries are enabled though the electroplating of 130 µm-thick 94% dense additive-free and crystallographically oriented LiCoO2 onto thin metal foils, which also act as the encapsulation layer. These devices have 430 Wh kg-1 and 1050 Wh L-1 energy densities, 4 times the energy density of previous similarly sized microbatteries, opening up the potential to power otherwise unpowerable microdevices.
To evaluate fertility and use of reproductive technology of testicular cancer survivors in a multi-institutional, cross-sectional study.
This study recruited testicular cancer survivors who were followed after treatment for testicular cancer at eight high-volume institutions between 2018 and 2019. The participants completed the questionnaires on marital status, fertility and use of reproductive technology.
A total of 567 testicular cancer survivors, with a median age of 43years, responded to the questionnaire. Chemotherapy was given to 398 survivors, including three cycles of cisplatin-based chemotherapy in 106 patients and four cycles in 147 patients. Among 153 survivors who attempted sperm cryopreservation, 133 (87%) could preserve sperm. Of the 28 survivors whose cryopreserved sperm was used, 17 (61%) fathered children. Of the 72 survivors who fathered children without the use of cryopreserved sperm, 59 (82%) fathered naturally. Whereas 33 (20%) of 169 survivors treated without chemotherapy fathered children without using cryopreserved sperm, 39 (10%) of 398 treated with chemotherapy fathered children (P<0.