Schaeferfoster8574

Z Iurium Wiki

Verze z 18. 11. 2024, 20:41, kterou vytvořil Schaeferfoster8574 (diskuse | příspěvky) (Založena nová stránka s textem „Developmental dysplasia of the hip (DDH) is characterized by abnormal bony anatomy, which causes detrimental hip joint loading and leads to secondary osteo…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Developmental dysplasia of the hip (DDH) is characterized by abnormal bony anatomy, which causes detrimental hip joint loading and leads to secondary osteoarthritis. Hip joint loading depends, in part, on muscle-induced joint reaction forces (JRFs), and therefore, is influenced by hip muscle moment arm lengths (MALs) and lines of action (LoAs). The current study used subject-specific musculoskeletal models and in-vivo motion analysis to quantify the effects of DDH bony anatomy on dynamic muscle MALs, LoAs, and their contributions to JRF peaks during early (~17%) and late-stance (~52%) of gait. Compared to healthy hips (N = 15, 16-39 y/o), the abductor muscles in patients with untreated DDH (N = 15, 16-39 y/o) had smaller abduction MALs (e.g. anterior gluteus medius, 35.3 vs. 41.6 mm in early stance, 45.4 vs. 52.6 mm late stance, p ≤ 0.01) and more medially-directed LoAs. Abduction-adduction and rotation MALs also differed for major hip flexors such as rectus femoris and iliacus. The altered MALs in DDH corresponded to higher hip abductor forces, medial JRFs (1.26 vs. 0.87 × BW early stance, p = 0.03), and resultant JRFs (5.71 vs. 4.97 × BW late stance, p = 0.05). DDH anatomy not only affected hip muscle force generation in the primary plane of function, but also their out-of-plane mechanics, which collectively elevated JRFs. Overall, hip muscle MALs and their contributions to JRFs were significantly altered by DDH bony anatomy. Therefore, to better understand the mechanisms of joint degeneration and improve the efficacy of treatments for DDH, the dynamic anatomy-force relationships and multi-planar functions of the whole hip musculature must be collectively considered.Aortic dissection is one of the most lethal cardiovascular diseases. A chronic Type A (Stanford) dissected aorta was retrieved for research from a 73-year-old male donor without diagnosed genetic disease. The aorta presented a dissection over the full length, and it reached a diameter of 7.7 cm in its ascending portion. The descending thoracic aorta underwent layer-specific quasi-static and dynamic mechanical characterizations after layer separation. Mechanical tests showed a physiological (healthy) behavior of the intima and some mechanical anomalies of the media and the adventitia. In particular, the static stiffness of both these layers at smaller strains was three times smaller than any one measured for twelve healthy aortas. When the viscoelastic properties were tested, adventitia presented a larger relative increase of the dynamic stiffness at 3 Hz with respect to most of the healthy aortas. The loss factor of the adventitia, which is associated with dissipation, was at the lower limit of those measured for healthy aortas. It seems reasonable to attribute these anomalies of the mechanical properties exhibited by the media and the adventitia to the severe remodeling secondary to the chronic nature of the dissection. However, it cannot be excluded that some of the mechanical anomalies were present before remodeling.In this paper the dynamics of human running on flat terrain and the required mechanical power output with its dependency on various parameters is investigated. Knowing the required mechanical power output is of relevance due to its relationship with the metabolic power. For example, a better understanding of the dependencies of required mechanical power output on weight, running and wind speed, step frequency, ground contact time etc. is very valuable for the assessment, analysis and optimization of running performance. Therefore, a mathematical model based on very few assumptions is devised. The purpose of the proposed model is to relate running speed and required mechanical power output as an algebraic function of the runner's mass, height, step rate, ground contact time and wind speed. This is relevant in order to better understand the mechanical energy cost of locomotion, and how much it depends on which parameters. The first of the main energy dissipation mechanisms is due to vertical oscillation, i.e., s is that it leads to closed algebraic expressions for the center of mass trajectory and mechanical power output, which are functions of measurable quantities, i.e., of step rate, ground contact time, running speed, runner's mass, center of mass height, aerodynamic drag at some given speed, wind speed and heart rate. Moreover, the model relies on very few assumptions, which have been verified, and the only tuning parameter is the ratio of recovered elastic energy.In the past decade, high-fidelity computational fluid dynamics (CFD) has uncovered the presence of high-frequency flow instabilities (on the order of 100 s of Hz) in a variety of cardiovascular applications. These fluctuations are typically reported as pulsatile velocity-time traces or fast-Fourier-transformed power-frequency spectra, often from a single point or at most a handful of points. Originally inspired by its use in spectral Doppler ultrasound, here we demonstrate the utility of the simplest form of time-frequency representation - the spectrogram - as a more comprehensive yet still-intuitive means of visualizing the potential harmonic complexity of pulsatile cardiovascular flows. After reviewing the basic theory behind spectrograms, notably the short-time Fourier transform (STFT), we discuss the choice of input parameters that inform the appearance and trade-offs of spectrograms. see more We show that spectrograms using STFT were able to highlight spectral features and were representative of those obtained from more complex methods such as the Continuous Wavelet transforms (CWT). While visualization properties (colourmap, filtering, smoothing/interpolation) are shown to affect the conspicuity of spectral features, the window properties (function, size, overlap) are shown to have the greatest impact on the resulting spectrogram appearance. Using a set of cerebral aneurysm CFD cases, we show that spectrograms can readily reveal the case-specific nature of the time-varying flow instabilities, whether broadband, suggesting intermittent turbulent-like flow, or narrowband, suggesting laminar vortex shedding, or some combination thereof.

Autoři článku: Schaeferfoster8574 (Talley Godwin)