Haganhirsch5304
Appreciating autistic neurodiversity is important when supporting autistic people who experience distress. Specifically, use of a profiling model can reveal less visible autistic differences, including strengths and abilities. Binary logistic regressions showed that the likelihood of extreme distress responses could be interpreted based on parent-reported autistic thinking pattern profiles for 140 young people. Perspective-taking (specifically empathy), extreme demand avoidance, and over-sensory sensitivity each contributed to the combined regression models. From the clinical perspective of autism as a multi-dimensional and inter-connected construct, there may be implications for planning support and building positive self-understanding. Individually tailored adjustments and support strategies may be identified more easily after delineating variables found across four core aspects sensory coherence, flexible thinking, perspective-taking, and regulation.This study investigated whether young adults with ASD (n = 29) had impairments in Cognitive Empathy (CE), Affective Empathy (AE) or Empathic Accuracy (EA; the ability to track changes in others' thoughts and feelings) compared to typically-developing individuals (n = 31) using the Empathic Accuracy Task (EAT), which involves watching narrators recollecting emotionally-charged autobiographical events. Participants provided continuous ratings of the narrators' emotional intensity (indexing EA), labelled the emotions displayed (CE) and reported whether they shared the depicted emotions (AE). The ASD group showed deficits in EA for anger but did not differ from typically-developing participants in CE or AE on the EAT. The ASD group also reported lower CE (Perspective Taking) and AE (Empathic Concern) on the Interpersonal Reactivity Index, a self-report questionnaire.Evaluation of ataxia in children is challenging in clinical practice. This is particularly true for highly heterogeneous conditions such as primary mitochondrial disorders (PMD). This study aims to explore cerebellar and brain abnormalities identified on MRI as potential predictors of ataxia in patients with PMD and, likewise, to determine the effect of the patient's genetic profile on these predictors as well as determination of the temporal relationship of clinical ataxia with MRI findings. We evaluated clinical, radiological, and genetic characteristics of 111 PMD patients younger than 21 years of age at The Children's Hospital of Philadelphia. Data was extracted from charts. Blinded radiological evaluations were carried out by experienced neuroradiologists. Multivariate logistic regression and generalized equation estimates were used for analysis. Ataxia was identified in 41% of patients. Cerebellar atrophy or putaminal involvement with mitochondrial DNA (mtDNA) mutations (OR 1.18, 95% CI 1.1-1.3, p less then 0.001) and nuclear DNA mutation with no atrophy of the cerebellum (OR 1.14, 95% CI 1.0-1.3, p = 0.007) predicted an increased likelihood of having ataxia per year of age. Central tegmental tract predicted the presence of ataxia independent of age and pathogenic variant origin (OR 9.8, 95% CI 2-74, p = 0.009). Ataxia tended to precede the imaging finding of cerebellar atrophy. Cerebellar atrophy and putaminal involvement on MRI of pediatric-onset PMD may predict the presence of ataxia with age in patients with mtDNA mutations. This study provides predicted probabilities of having ataxia per year of age that may help in family counseling and future research of the population.The objective of this study was to identify the decussating dentato-rubro-thalamic tract (d-DRTT) and its afferent and efferent connections in healthy humans using diffusion spectrum imaging (DSI) techniques. In the present study, the trajectory and lateralization of the d-DRTT was explored using data from subjects in the Massachusetts General Hospital-Human Connectome Project adult diffusion dataset. The afferent and efferent networks that compose the cerebello-thalamo-cerebral pathways were also reconstructed. TASIN-30 research buy Correlation analysis was performed to identify interrelationships between subdivisions of the cerebello-dentato-rubro-thalamic and thalamo-cerebral connections. The d-DRTT was visualized bilaterally in 28 subjects. According to a normalized quantitative anisotropy and lateralization index evaluation, the left and right d-DRTT were relatively symmetric. Afferent regions were found mainly in the posterior cerebellum, especially the entire lobule VII (crus I, II and VIIb). Efferent fibers mainly are projected to the contralateral frontal cortex, including the motor and nonmotor regions. Correlations between cerebello-thalamic connections and thalamo-cerebral connections were positive, including the lobule VIIa (crus I and II) to the medial prefrontal cortex (MPFC) and the dorsolateral prefrontal cortex and lobules VI, VIIb, VIII, and IX, to the MPFC and motor and premotor areas. These results provide DSI-based tratographic evidence showing segregated and parallel cerebellar outputs to cerebral regions. The posterior cerebellum may play an important role in supporting and handling cognitive activities through d-DRTT. Future studies will allow for a more comprehensive understanding of cerebello-cerebral connections.Lung cancer is a lethal malignancy and is affected by genetic polymorphisms that contribute to an individual's susceptibility to developing the disease. Several studies on lung cancer showed conflicting results. The aim of this study is to investigate whether individual or combined modifying effects of LOX G/A, GSTM1 active/null, GSTT1 active/null and GSTP1 Ile/Val polymorphisms are related to the risk of lung cancer in relation to smoking in the Egyptian population. This study is a hospital-based case control study that included 200 patients and 200 control subjects. Genotyping of the 4 studied genes was determined by Multiplex PCR for GSTM1 and GSTT1 and Taq man SNP assay for GSTP1 and LOX genes. The LOX G/A and GSTP1 Ile/Val in both homozygous and heterozygous variants, and the GSTM1 and GSTT1 null genotype showed significant association with lung cancer. Combination between gene polymorphism and smoking increased the risk of developing cancer by 2.7 fold in the LOX GA+AA variant, 1.9 fold in the GSTM1 null variant, 4.