Hemmingsenviborg7624

Z Iurium Wiki

Verze z 18. 11. 2024, 19:37, kterou vytvořil Hemmingsenviborg7624 (diskuse | příspěvky) (Založena nová stránka s textem „Abrin, a toxin isolated from the seeds of Abrus precatorius (jequirity pea) is considered a biological threat agent by the Center for Disease Control and P…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Abrin, a toxin isolated from the seeds of Abrus precatorius (jequirity pea) is considered a biological threat agent by the Center for Disease Control and Prevention. To date, there is no effective postexposure treatment for abrin poisoning, and efforts are being made to develop an efficient vaccine and measures for postexposure therapy. Epitope mapping is widely applied as an efficient tool for discovering the antigenic moieties of toxins, thus providing invaluable information needed for the development of vaccines and therapies. Aiming to identify the immunodominant epitopes of abrin, several neutralizing antiabrin polyclonal antibodies were screened using a set of 15-mer peptides spanning the amino acid sequence of either the A or B subunits of abrin. Analysis of the antibody-binding pattern revealed 11 linear epitopes for the A subunit and 14 epitopes for the B subunit that are located on the surface of the toxin and thus accessible for antibody interactions. Moreover, the spatial location of several of these epitopes suggests they may block the galactose-binding pockets or the catalytic domain, thus neutralizing the toxin. These findings provide useful information and suggest a possible strategy for the development and design of an improved abrin-based vaccine and therapeutic antibodies.Isofraxidin (7-hydroxy-6, 8-dimethoxy coumarin) (IF) is a hydroxy coumarin with several biological and pharmacological activities. The plant kingdom is of the most prominent sources of IF, which, among them, Eleutherococcus and Fraxinus are the well-known genera in which IF could be isolated/extracted from their species. Considering the complex pathophysiological mechanisms behind some diseases (e.g., cancer, neurodegenerative diseases, and heart diseases), introducing IF as a potent multi-target agent, which possesses several herbal sources and the multiple methods for isolation/purification/synthesis, along with the unique pharmacokinetic profile and low levels of side effects, could be of great importance. Accordingly, a comprehensive review was done without time limitations until February 2020. IF extraction methods include microwave, mechanochemical, and ultrasound, along with other conventional methods in the presence of semi-polar solvents such as ethyl acetate (EtOAc). In addition to the isolation methods, related synthesis protocols of IF is also of great importance. From the synthesis point of view, benzaldehyde derivatives are widely used as precursors for IF synthesis. Along with the methods of isolation and biosynthesis, IF pharmacokinetic studies showed hopeful in vivo results of its rapid absorption after oral uses, leading to different pharmacological effects. In this regard, IF targets varieties of inflammatory mediators including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumor necrosis factor-α (TNF-α), and matrix metalloproteinases (MMPs). find more thereby indicating anticancer, cardioprotective, and neuroprotective effects. This is the first review on the synthesis, biosynthesis, isolation, and pharmacokinetic and pharmacological properties of IF in combating different diseases.Aeromonas hydrophila is an opportunistic pathogen responsible for a number of diseases in freshwater farming. Moreover, the bacterium has been identified as a zoonotic pathogen that threatens human health. Antibiotics are widely used for treatments of infectious diseases in aquaculture. However, the abuse of antibiotics has led to the emergence of antimicrobial resistant strains. Thus, novel strategies are required against resistant A. hydrophila strains. The quorum sensing (QS) system, involved in virulence factor production and biofilm formation, is a promising target in identifying novel drugs against A. hydrophila infections. In this study, we found that thymol, at sub-inhibitory concentrations, could significantly reduce the production of aerolysin and biofilm formation by inhibiting the transcription of genes aerA, ahyI, and ahyR. These results indicate that thymol inhibits the quorum sensing system. The protective effects of thymol against A. hydrophila mediated cell injury were determined by live/dead assay and lactate dehydrogenase (LDH) release assay. Moreover, the in vivo study showed that thymol could significantly decrease the mortality of channel catfish infected with A. hydrophila. Taken together, these findings demonstrate that thymol could be chosen as a phytotherapeutic candidate for inhibiting quorum sensing system-mediated aerolysin production and biofilm formation in A. hydrophila.Image deteriorations due to vibrations have become a problem in autonomous systems such as unmanned aerial vehicles, robots, and autonomous cars. To suppress the vibration, a camera stabilizer using a gimbal mechanism is widely used. However, the size and weight of the system increase because the conventional image stabilization systems require some actuators and links to drive in multi-axes. In order to solve these problems, we proposed a novel three-degree-of-freedom (3DOF) electromagnetic actuator for image stabilization. The actuator can be driven by only three-phase and has a simple structure and control system. This paper describes the experimental verification of the proposed actuator. The torque characteristics are clarified, and the analysis and measured torque characteristics are compared to verify the analysis validity. For verifying the dynamic performance, the frequency characteristics are measured. The effectiveness of the proposed magnetic structure and operating principle are investigated.Considering the increasing interest in the incorporation of natural antioxidants in enriched foods, this work aimed to establish a food-grade and suitable procedure for the recovery of polyphenols from cocoa beans avoiding the degreasing process. The results showed that ultrasound for 30 min with particle sample size 7, as well as high antioxidant activity determined by Oxygen Radical Absorbance Capacity (1149.85 ± 25.10 µMTrolox eq /g) and radical scavenging activity (DPPH•, 120.60 ± 0.50 µM Trolox eq /g). Overall, the recovery method made possible increases of 59.7% and 12.8% in cocoa polyphenols content and extraction yield, respectively. This study showed an effective, suitable and cost-effective process for the extraction of bioactive compounds from cocoa beans without degreasing.

Autoři článku: Hemmingsenviborg7624 (Kessler Lerche)