Forbesdalrymple4508
Disorder in the contact between an amorphous slider and a crystalline substrate leads to a cancellation of lateral forces. Atomically flat, rigid surfaces exhibit structural superlubricity, with the frictional stress in circular contacts of radius a vanishing as 1/a. The inclusion of elasticity allows relative motion of domains on the surface in response to the random interfacial forces. The competition between disorder and elastic deformation is predicted to limit structural superlubricity and produce a constant frictional stress for a larger than a characteristic domain size λ that depends on the ratio of the shear modulus G to the magnitude of interfacial shear stresses τ0. Extensive simulations of a flat, amorphous punch sliding on a crystalline substrate with different system sizes and G/τ0 are used to test scaling predictions and determine unknown prefactors that are needed for quantitative analysis. For bulk systems, we find an exponential decrease of the large a frictional stress and 1/λ with increasing G/τ0. For thin free-standing films, the stress and 1/λ are inversely proportional to G/τ0. These results may help explain the size-dependent friction of nanoparticles and plate-like materials used as solid lubricants.Dry anaerobic digestion (AD) of organic municipal solid waste (MSW) followed by composting of the residual digestate is a waste diversion strategy that generates biogas and soil amendment products. The AD-composting process avoids methane (CH4) emissions from landfilling, but emissions of other greenhouse gases, odorous/toxic species, and reactive compounds can affect net climate and air quality impacts. In situ measurements of key sources at two large-scale industrial facilities in California were conducted to quantify pollutant emission rates across the AD-composting process. These measurements established a strong relationship between flared biogas ammonia (NH3) content and emitted nitrogen oxides (NO x ), indicating that fuel NO x formation is significant and dominates over the thermal or prompt NO x pathways when biogas NH3 concentration exceeds ∼200 ppm. Composting is the largest source of CH4, carbon dioxide (CO2), nitrous oxide (N2O), and carbon monoxide (CO) emissions (∼60-70%), and dominate NH3, hydrogen sulfide (H2S), and volatile organic compounds (VOC) emissions (>90%). The high CH4 contribution to CO2-equivalent emissions demonstrates that composting can be an important CH4 source, which could be reduced with improved aeration. Controlling greenhouse gas and toxic/odorous emissions from composting offers the greatest mitigation opportunities for reducing the climate and air quality impacts of the AD-composting process.Calorimetry of reactions involving nanomaterials is of great current interest, but requires high-resolution heat flow measurements and long-term thermal stability. Such studies are especially challenging at elevated reaction pressures and temperatures. Here, we present an instrument for measuring the enthalpy of reactions between gas-phase reactants and milligram scale nanomaterial samples. This instrument can resolve the net change in the amount of gas-phase reactants due to surface reactions in an operating range from room temperature to 300 °C and reaction pressures of 10 mbar to 30 bar. The calorimetric resolution is shown to be less then 3 μW/√Hz, with a long-term stability less then 4 μW/hour. The performance of the instrument is demonstrated via a set of experiments involving H2 absorption on Pd nanoparticles at various pressures and temperatures. For this specific reaction, we obtained a mass balance resolution of 0.1 μmol/√Hz. Results from these experiments are in good agreement with past studies establishing the feasibility of performing high resolution calorimetry on milligram scale nanomaterials, which can be employed in future studies probing catalysis, phase transformations, and thermochemical energy storage.Here, we have developed and evaluated a microfluidic-based human blood-brain-barrier (μBBB) platform that models and predicts brain tissue uptake of small molecule drugs and nanoparticles (NPs) targeting the central nervous system. By using a photocrosslinkable copolymer that was prepared from monomers containing benzophenone and N-hydroxysuccinimide ester functional groups, we were able to evenly coat and functionalize μBBB chip channels in situ, providing a covalently attached homogenous layer of extracellular matrix proteins. This novel approach allowed the coculture of human endothelial cells, pericytes, and astrocytes and resulted in the formation of a mimic of cerebral endothelium expressing tight junction markers and efflux proteins, resembling the native BBB. The permeability coefficients of a number of compounds, including caffeine, nitrofurantoin, dextran, sucrose, glucose, and alanine, were measured on our μBBB platform and were found to agree with reported values. In addition, we successfully visualized the receptor-mediated uptake and transcytosis of transferrin-functionalized NPs. this website The BBB-penetrating NPs were able to target glioma cells cultured in 3D in the brain compartment of our μBBB. In conclusion, our μBBB was able to accurately predict the BBB permeability of both small molecule pharmaceuticals and nanovectors and allowed time-resolved visualization of transcytosis. Our versatile chip design accommodates different brain disease models and is expected to be exploited in further BBB studies, aiming at replacing animal experiments.A lithiated m-terphenyl ligand bearing fluorine atoms at the ortho positions of the flanking aryl rings was synthesized and characterized using single crystal X-ray diffraction, variable-temperature multinuclear NMR spectroscopy, and computational methods. Changes in 1JC,F on coordination to lithium as a spectroscopic observable parametrizing the strength of the C-F···Li interaction are described, and a general, qualitative relationship between C-F bond lengths, Δ1JC,F values, and the extent of C-F bond activation as a result of Lewis acid coordination is proposed.The discovery of a pan-genotypic hepatitis C virus (HCV) NS3/4A protease inhibitor based on a P1-P3 macrocyclic tripeptide motif is described. The all-carbon tether linking the P1-P3 subsites of 21 is functionalized with alkyl substituents, which are shown to effectively modulate both potency and absorption, distribution, metabolism, and excretion (ADME) properties. The CF3Boc-group that caps the P3 amino moiety was discovered to be an essential contributor to metabolic stability, while positioning a methyl group at the C1 position of the P1' cyclopropyl ring enhanced plasma trough values following oral administration to rats. The C7-fluoro, C6-CD3O substitution pattern of the P2* isoquinoline heterocycle of 21 was essential to securing the targeted potency, pharmacokinetic (PK), and toxicological profiles. The C6-CD3O redirected metabolism away from a problematic pathway, thereby circumventing the time-dependent cytochrome P (CYP) 450 inhibition observed with the C6-CH3O prototype.