Hoffmannholm7111

Z Iurium Wiki

Verze z 18. 11. 2024, 15:25, kterou vytvořil Hoffmannholm7111 (diskuse | příspěvky) (Založena nová stránka s textem „Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported as the important regulators in osteoarthritis (OA). However, the detailed mechanis…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported as the important regulators in osteoarthritis (OA). However, the detailed mechanism is implicated. The aim of this study is to reveal the functional mechanism of lncRNA ARFRP1 and miR-15a-5p in osteoarthritis.

The expression level of genes was detected by quantitative real time polymerase chain reaction (qRT-PCR) or western blot assay. Cell Counting Kit-8 (CCK-8) was used to assess cell viability. Cell apoptosis rate was analyzed by flow cytometry analysis. Furthermore, Enzyme-linked immunosorbent assay (ELISA) was performed to measure tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β contents. The interaction between miR-15a-5p and ARFRP1 or Toll-like receptor 4 (TLR4) was predicted by miRcode or PITA, and then confirmed by the dual luciferase reporter assay or pull down assay. Besides, NF-κB-driven luciferase activity was determined using NF-κB luciferase reporter assay.

ARFRP1 and TLR4 levels were increased and miR-15a-5p level was decreased in OA cartilage tissues and lipopolysaccharides (LPS)-induced chondrocytes. ARFRP1 knockdown inhibited LPS-induced the injury of chondrocytes. Interestingly, miR-15a-5p downregulated by ARFRP1 negatively modulated TLR4 expression through interaction. ARFRP1 mediated LPS-induced the injury of chondrocytes via regulating miR-15a-5p/TLR4 axis. Furthermore, ARFRP1 exerted function by modulation of NF-κB pathway.

Our findings confirmed that ARFRP1 mediated LPS-induced the injury of chondrocytes through regulating NF-κB pathway by modulation of miR-15a-5p/TLR4 axis, providing theoretical basis for the treatment of OA patients.

Our findings confirmed that ARFRP1 mediated LPS-induced the injury of chondrocytes through regulating NF-κB pathway by modulation of miR-15a-5p/TLR4 axis, providing theoretical basis for the treatment of OA patients.The severe infection is becoming a significant health problem which threaten the lives of patients and the safety and economy of society. In the way of finding new strategy, antimicrobial peptides (AMPs) - an important part of host defense family, emerged with tremendous potential. Up to date, huge numbers of AMPs has been investigated from both natural and synthetic sources showing not only the ability to kill microbial pathogens but also propose other benefits such as wound healing, anti-tumor, immune modulation. In this review, we describe the involvements of AMPs in biological systems and discuss the opportunity in developing AMPs for clinical applications. In the detail, their properties in antibacterial activity is followed by their application in some infection diseases and cancer. The key discussions are the approaches to improve biological activities of AMPs either by modifying chemical structure or incorporating into delivery systems. The new applications and perspectives for the future of AMPs would open the new era of their development.

In our study, the anticancer effects of a semisynthetic p-quinol, protoapigenone 1'-O-butyl ether (PABut), were tested in human melanoma A375 cells also in comparison with natural congener, protoapigenone (PA).

The cytotoxic effect of PABut and PA was determined using MTT assay. Flow cytometry analysis was used to evaluate the influence of the compounds tested on ROS generation and cell cycle distribution in A375 cells. Moreover, apoptosis was evaluated by AO/EB dual staining as well as by flow cytometry. Markers of senescence were quantified by spectrofluorimetry and by Western blot analysis.

Both PABut and PA showed significant cytotoxicity against melanoma A375 cells at sub-micromolar concentrations. Both protoflavones induced comparable cell cycle arrest in G2/M phase. However, a more profound upregulation of intracellular ROS levels was found following PABut treatment. An increased apoptosis in the cells following 48h treatment with both protoflavones tested was also confirmed. Both compounds testehanced chemotherapeutic potency of PABut compared to the unmodified natural protoflavone.Hydraulic fracturing is used to access oil and natural gas reserves. This process involves the high-pressure injection of fluid to fracture shale. Fracking fluid contains approximately 95% water, chemicals and 4.5% fracking sand. Workers may be exposed to fracking sand dust (FSD) during the manipulation of the sand, and negative health consequences could occur if FSD is inhaled. In the absence of any information about its potential toxicity, a comprehensive rat animal model study (see Fedan et al., 2020) was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems. The goal of this study was to assess the effects of inhalation of one FSD, i.e., FSD 8, on factors and tissues that affect cardiovascular function. Male rats were exposed to 10 or 30 mg/m3 FSD (6 h/d for 4 d) by whole body inhalation, with measurements made 1, 7 or 27 d post-exposure. One day following exposure to 10 mg/m3 FSD the sensitivity to phenylephrine-induced vasoconstriction in tail arteries in vitro was increased. FSD exposure at both doses resulted in decreases in heart rate (HR), HR variability, and blood pressure in vivo. FSD induced changes in hydrogen peroxide concentrations and transcript levels for pro-inflammatory factors in heart tissues. In kidney, expression of proteins indicative of injury and remodeling was reduced after FSD exposure. When analyzed using regression analysis, changes in proteins involved in repair and remodeling were correlated. Thus, it appears that inhalation of FSD does have some prolonged effects on cardiovascular, and, possibly, renal function. The findings also provide information regarding potential mechanisms that may lead to these changes, and biomarkers that could be examined to monitor physiological changes that could be indicative of impending cardiovascular dysfunction.Fatty acid nitroalkenes are reversibly-reactive electrophiles, endogenously detectable at nM concentrations, displaying anti-inflammatory actions. Nitroalkenes like 9- or 10-nitro-octadec-9-enoic acid (e.g. nitro-oleic acid, OA-NO2) pleiotropically suppress cardiovascular inflammatory responses, with pulmonary responses less well defined. C57BL/6 J male mice were intratracheally administered bleomycin (3 U/kg, ITB), to induce pulmonary inflammation and acute injury, or saline and were treated with 50 μL OA-NO2 (50 μg) or vehicle in the same instillation and 72 h post-exposure to assess anti-inflammatory properties. Bronchoalveolar lavage (BAL) and lung tissue were collected 7d later. ITB mice lost body weight, with OA-NO2 mitigating this loss (-2.3 ± 0.94 vs -0.4 ± 0.83 g). Androgen Receptor Antagonist Histology revealed ITB induced cellular infiltration, proteinaceous debris deposition, and tissue injury, all significantly reduced by OA-NO2. Flow cytometry analysis of BAL demonstrated loss of Siglec F+/F4/80+/CD45+ alveolar macrophages with ITB (89 ± 3.

Autoři článku: Hoffmannholm7111 (Wulff Moser)