Serranohoover2066

Z Iurium Wiki

Verze z 18. 11. 2024, 15:04, kterou vytvořil Serranohoover2066 (diskuse | příspěvky) (Založena nová stránka s textem „Stability studies, which have innovative features for 3D tablets, were conducted in optimum 3D tablet formulation for 6 months at 25 °C/60% relative humid…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Stability studies, which have innovative features for 3D tablets, were conducted in optimum 3D tablet formulation for 6 months at 25 °C/60% relative humidity (RH) and 40 °C/75% RH conditions. After oral administration of the optimum 3D tablets and the marketed tablets (in the same dose) to the rats, 24-hour plasma profiles were obtained and pharmacokinetic parameters were calculated. 3D tablets were successfully prepared in personalized doses and their properties were similar for almost all doses. The optimum 3D tablet formulation was found to be stable during the stability tests. 3D tablet and marketed tablet performed similar plasma profiles. Ixazomib The relative bioavailability of 3D tablet formulation was calculated as 107.6% compared with the marketed tablet. Briefly, in vitro and in vivo evaluations demonstrated that FDM-3D printing is a promising technology for the development of personalized dosage forms with extended release property and comparable to conventional ones.In this study, galactosamine-modified poly(ethylene glycol)-poly(lactide) (Gal-PEG-PLA) polymers were synthesized and Gal-PEG-PLA/D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) micelles named as GPP micelles were designed to promote the oral absorption of a hydrophobic drug, curcumin (CUR). CUR-loaded Gal-PEG-PLA/TPGS micelles (CUR@GPP micelles) were fabricated using the thin-film dispersion method. CUR@GPP micelles had a size of about 100 nm, a near-neutral zeta potential, drug loading (DL) of 14.6%, and sustained release properties. GPP micelles with high Gal density (GPP3 micelles) were superior in facilitating uptake in epithelial cells and improving intestinal permeation. In situ intestinal absorption studies suggested that the jejunum and ileum were the best absorption segments in the intestinal tract. Additionally, biodistribution results revealed that GPP3 micelles could be remarkably taken up by the jejunum and ileum. Pharmacokinetics revealed that the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from 0 to 24 h (AUC0-24) for CUR@GPP3 micelles were both significantly increased, and that the relative bioavailability of CUR@GPP3 micelles to CUR-loaded mPEG-PLA/TPGS micelles (CUR@PP micelles) was 258.8%. Furthermore, CUR-loaded micelles could reduce damage to the liver and intestinal tissues. This study highlights the importance of Gal content in the design of targeting nanocarrier Gal-modified micelles, which have broad prospects for oral delivery of hydrophobic drugs. Therefore, they could serve as a promising candidate for targeted delivery to the liver.In this study, a novel solvent-evaporation based technology to manufacture amorphous solid dispersions (ASDs) called vacuum drum drying (VDD) was assessed in comparison to the conventional technologies hot-melt extrusion (HME) and spray drying (SD). Ritonavir (15%w/w) embedded in copovidone/sorbitan monolaurate was used to investigate the impact on the ASD quality, material properties and in-vitro dissolution. All ASDs met the critical quality criteria absence of drug substance related crystallinity, residual solvents below ICH limit (SD, VDD) and degradation products within specification limits. Clear differences in material properties such as particle morphology and size distribution, powder densities and flowability properties were observed. Overall, the milled extrudate showed superior material properties in terms of downstream processability. The VDD intermediate performed slightly better in terms of flowability and electrostatic behavior compared to the spray dried while showing comparably unfavorable densities. However, the dissolution data suggested no significant difference between the ASDs prepared by HME, SD, and VDD and thus, no change in bioavailability is expected. In conclusion, the VDD technology might be a viable alternative to manufacture ASDs - especially for thermosensitive and shear-sensitive compounds with potential to process formulations with high solid loads and viscosities while exhibiting higher throughputs at a lower footprint.

A coordinated stress and regenerative response is important after hepatocyte damage. Here, we investigate the phenotypes that result from genetic abrogation of individual components of the checkpoint kinase 2/transformation-related protein 53 (p53)/cyclin-dependent kinase inhibitor 1A (p21) pathway in a murine model of metabolic liver injury.

Nitisinone was reduced or withdrawn in Fah

mice lacking Chk2, p53, or p21, and survival, tumor development, liver injury, and regeneration were analyzed. Partial hepatectomies were performed and mice were challenged with the Fas antibody Jo2.

In a model of metabolic liver injury, loss of p53, but not Chk2, impairs the oxidative stress response and aggravates liver damage, indicative of a direct p53-dependent protective effect on hepatocytes. Cell-cycle control during chronic liver injury critically depends on the presence of both p53 and its downstream effector p21. In p53-deficient hepatocytes, unchecked proliferation occurs despite a strong induction of p21, shinjury model. The extent to which loss of gene function can be compensated, or affects injury and proliferation, is related to the level at which the cascade is interrupted. Accession numbers of repository for expression microarray data GSE156983, GSE156263, GSE156852, and GSE156252.The degree of tissue injuries such as the level of scarring or organ dysfunction, and the immune response against them primarily determine the outcome and speed of healing process. The successful regeneration of functional tissues requires proper modulation of inflammation-producing immune cells and bioactive factors existing in the damaged microenvironment. In the tissue repair and regeneration processes, different types of biomaterials are implanted either alone or by combined with other bioactive factors, which will interact with the immune systems including immune cells, cytokines and chemokines etc. to achieve different results highly depending on this interplay. In this review article, the influences of different types of biomaterials such as nanoparticles, hydrogels and scaffolds on the immune cells and the modification of immune-responsive factors such as reactive oxygen species (ROS), cytokines, chemokines, enzymes, and metalloproteinases in tissue microenvironment are summarized. In addition, the recent advances of immune-responsive biomaterials in therapy of inflammation-associated diseases such as myocardial infarction, spinal cord injury, osteoarthritis, inflammatory bowel disease and diabetic ulcer are discussed.

Autoři článku: Serranohoover2066 (Winkler Tranberg)