Grothkondrup4021

Z Iurium Wiki

Verze z 17. 11. 2024, 22:15, kterou vytvořil Grothkondrup4021 (diskuse | příspěvky) (Založena nová stránka s textem „Innate lymphoid cells (ILCs) rapidly undergo expansion in population size and functional maturation in response to cytokines that signal infection, tissue…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Innate lymphoid cells (ILCs) rapidly undergo expansion in population size and functional maturation in response to cytokines that signal infection, tissue damage, or changes in physiology. Optimal ILC responses are shaped, in part, by the microbiota but the mechanisms remain unclear. We report that short-chain fatty acids (SCFAs), produced by the commensal microbiota from dietary fibers, support optimal expansion of ILCs, including ILC1, ILC2, and ILC3 in the intestines through their G-protein-coupled receptors (GPCRs). While this function is primarily important for intestinal ILC populations, it can also boost ILC responses in other tissues depending on host condition. ILCs express multiple GPCRs that detect SCFAs. Interestingly, we found that the expression of SCFA receptors, such as Ffar2 and Ffar3, by ILCs is induced by SCFAs. GPCR triggering by SCFAs co-stimulates the activation of phosphoinositide 3-kinase (PI3K), Stat3, Stat5, and mammalian target of rapamycin (mTOR), which is important for ILC proliferation. While Ffar2 signaling promotes ILC2 proliferation, SCFAs can suppress ILC2 proliferation through a non-Ffar2-mediated mechanism. In conclusion, our findings indicate that SCFAs, as the major mediator of healthy microbiota and nutritional status, function to maintain optimal numbers of ILCs in peripheral tissues during infection and inflammatory responses.The causative agent of leptospirosis includes multiple serovars and species of pathogenic leptospires that are excreted via urine from reservoir hosts of infection. Primary isolation takes weeks to months, and is limited to semi-solid media at 28-30 °C. Here we present an alternative media formulation, HAN, compared to commercially available EMJH and the more specialized T80/40/LH media formulations, in semi-solid and liquid compositions, for the primary isolation of two diverse species and serovars of pathogenic leptospires directly from host kidney tissue. All three media types supported the isolation and propagation of L. Acetosyringone in vivo interrogans serovar Copenhageni strain IC20001 in semi-solid media at 29 °C. However, only HAN and T80/40/LH supported the growth of L. borgpetersenii serovar Hardjo strain HB15B203 at 29 °C. In addition, HAN supported primary isolation at 37 °C. Both T80/40/LH and HAN supported primary isolation of strain IC20001 in liquid media at 29 °C but only HAN supported growth of strain HB15B203 in liquid media, at both 29 and 37 °C. HAN media supports the primary isolation of fastidious pathogenic leptospires directly from infected host tissue at either 29 or 37 °C this formulation represents a more defined media for the continued optimization of growth factors required to support the primary isolation of the large and diverse range of species and serovars within the genus Leptospira circulating within domestic and wild animal populations.In the present work, we demonstrated the biosynthesis of silver nanoparticles (AgNPs) by highly stable, economic and eco-friendly method using leaf extract of Terminalia arjuna (T. arjuna) and employing as a catalyst for the degradation of methyl orange (MO), methylene blue (MB), congo red (CR) and 4- nitrophenol (4-NP). The biosynthesis of AgNPs was visually validated through the appearance of reddish-brown color and further confirmed by the UV-spectra at 418 nm. The TEM and FE-SEM studies revealed the spherical shape of particles with size ranged between 10-50 nm. Face centered cubic crystalline nature of AgNPs was proved by XRD analysis. The negative value of zeta potential (-21.7) indicated the stability of AgNPs and elemental composition was confirmed by EDS. FT-IR analysis revealed the functional groups present in the plant extract trigger the biosynthesis of AgNPs. The AgNPs exhibited strong degradation of MO (86.68%), MB (93.60%), CR (92.20%) and 4NP (88.80%) by completing the reduction reaction within 20 min. The reaction kinetics followed the pseudo-first-order and displayed k-values (rate constant) 0.166 min-1, 0.138 min-1, 0.182 min-1 and 0.142 min-1 for MO, MB, CR and 4-NP respectively. This study showed an efficient, feasible and reproducible method for the biosynthesis of eco-friendly, cheap and long-time stable AgNPs and their application as potent catalysts against the degradation of hazardous dyes.The mammalian target of rapamycin (mTOR) functions as two complexes (mTORC1 and mTORC2), regulating cell growth and metabolism. Aberrant mTOR signaling occurs frequently in cancers, so mTOR has become an attractive target for cancer therapy. Iron chelators have emerged as promising anticancer agents. However, the mechanisms underlying the anticancer action of iron chelation are not fully understood. Particularly, reports on the effects of iron chelation on mTOR complexes are inconsistent or controversial. Here, we found that iron chelators consistently inhibited mTORC1 signaling, which was blocked by pretreatment with ferrous sulfate. Mechanistically, iron chelation-induced mTORC1 inhibition was not related to ROS induction, copper chelation, or PP2A activation. Instead, activation of AMPK pathway mainly and activation of both HIF-1/REDD1 and Bnip3 pathways partially contribute to iron chelation-induced mTORC1 inhibition. Our findings indicate that iron chelation inhibits mTORC1 via multiple pathways and iron is essential for mTORC1 activation.Cyclin-dependent kinases 4 and 6 (CDK4/6) phosphorylate and inhibit retinoblastoma (RB) family proteins. Hyperphosphorylated RB releases E2F transcription factors, activating a transcriptional program that initiates S phase. Due to the critical role that this pathway has in regulating cell cycle progression, inhibiting CDK4/6 is an attractive therapeutic strategy. Indeed, CDK4/6 inhibitors in combination with antiestrogens produce a significant benefit in patients with ER+/HER2- breast cancer. Clinical trials are currently investigating if the use of CDK4/6 inhibitors alone or in combination can be extended to other cancer types. Inhibition of CDK4/6 can result in different cell fates such as quiescence, senescence, or apoptosis. Senescence is a stress response that can be induced by stimuli that include oncogenic activation, chemotherapy, irradiation, and targeted therapies such as CDK4/6 inhibitors. Senescent cells undergo a stable cell cycle arrest and produce a bioactive secretome that remodels their microenvironment and engages the immune system.

Autoři článku: Grothkondrup4021 (Wolf Ovesen)