Gallagherrichmond3747
The addition of second metal (Co) to nanoscale iron particles (NIPs) is an attractive strategy to improve catalytic capacity. However, the nanoparticles tend to form chain-like aggregates. In this study, bacterial 16S rRNA gene, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) from secondary effluent were significantly removed by Ginkgo biloba L. selleck compound modified nanoscale iron-cobalt particles (GNICPs). When the Co loading, initial pH value, DO and dosage were 10%, 7.33, 8.94 mg/L and 1.12 g/L, some ARGs and MGEs could be reduced below the detection limit at the 2nd or 3rd cycle. Illumina MiSeq sequencing demonstrated that negative correlations were found between ARGs and reaction time/cycles. The predicted microbial functions by FAPROTAX database indicated GNICPs were effective in eliminating human_pathogens_all. Furthermore, oligotyping revealed all ARGs and MGEs were positively correlated with oligotype 10, which indicated GNICPs removed oligotype 10 easily.A novel denitrifying phosphorus-accumulating bacterium was isolated from contaminated sediment and identified as Pseudomonas stutzeri ADP-19. Bio-safety assays demonstrated that the strain was γ-hemolytic, antibiotic-sensitive, and had no decarboxylase activity. It removed 96.5% of NH4+-N and 73.3% of PO43--P (at initial concentrations of 100 mg/L and 20 mg/L) under aerobic conditions, and the corresponding maximum removal rates were 3.44 and 0.41 mg/L/h, respectively. Nitrogen removal was achieved through a fully nitrification-denitrification pathway [NH4+-N → NH2OH → NO2--N → NO3--N → NO2--N → (NxO) → N2], while phosphorus removal mainly depended on the phosphate assimilation and the excessive poly-P accumulation. Strain ADP-19 also showed a strong salt tolerance within a wide salinity range of 0-5%. The enhanced biological treatment of anaerobic-digested wastewater in a sequencing batch reactor (SBR) indicated that the strain improved the microbial diversity of the activated sludge and significantly enhanced the nitrogen and phosphorus removal efficiency.Non-noble bimetallic nanoparticles anchored on Zeolitic Imidazolate Frameworks, bifunctional ReMo@ZNB catalyst, has been demonstrated to promote Kraft lignin depolymerization. In this study, the catalytic activities under different heat treatment conditions are ranked as follows ReMo@ZNB-700 (Air) > ReMo@ZNB-500 (Air) > ReMo@ZNB-700 (N2). Particularly, bimetallic ReMo nanocatalyst with Re/Mo atomic ratio of 1/3 shows superior performance. Excellent yields of Ethyl acetate soluble products (92.18%) and Petroleum ether extracted biofuels (78%) are obtained at 300℃ and 24 h, and the calorific value is 32.33 MJ/kg. The ReMo@ZNB catalyst exhibits superior recyclability and regeneration after cycle experiment. Structural characterization results reveal that the incorporation of ReMo can engender the transformation of lattice morphology, the strength of hydrogenation and acid adsorption. The possible mechanism is based on the synergism of adsorption coupling and hydrogenation over ReMo@ZNB catalyst. The synergic action initiates potential perspectives for improving lignin hydroconversion.This study aims to screen high-degradability strains and develop a novel microbial agent for efficient food waste degradation. The effects of the novel microbial agent on organic matter degradation, enzyme activity, and bacterial succession during the in-situ reduction of food waste were evaluated and compared with other two microbial agents previously developed. Results showed that the novel agent containing four Bacillus strains received maximum organic degradation rates, volatile solid removal (46.91%) and total mass reduction (76.16%). Pyrosequencing analysis revealed that there was a significant difference in the microbial community structure of the matrix among the three biodegradation systems, and the novel agent greatly improved the stability of in-situ reduction process that Bacillus was the dominant genus (>98%) since day 4. These results indicated that the inoculant containing only Bacillus was more stable and cost-effective in FW in-situ reduction.Cow manure (CM) generation in large volumes has for long been considered a waste management challenge. However, the organic content of CM signals opportunities for the production of value-added bioproducts such as volatile fatty acids (VFAs) through anaerobic digestion (AD). However, a robust VFAs fermentation process requires effective methane formation inhibition and enhance VFAs recovery. In this study, thermal pretreatment was applied to inhibit methanogens for enhanced VFAs production and an immersed membrane bioreactor (iMBR) for in situ recovery of VFAs in a semi-continuous AD. Maximal VFAs yield of 0.41 g VFAs/g volatile solids (VS) was obtained from thermally-treated CM without inoculum addition. The CM was further fed to the iMBR operating at organic loading rates of 0.8-4.7 gVS/L.d. The VFAs concentration increased to 6.93 g/L by rising substrate loading to 4.7 g VS/L.d. The applied iMBR set-up was successfully used for stable long-term (114 days) VFAs production and recovery.
By applying a joint medico-historical and paleopathological perspective, this paper aims to improve our understanding of factors influencing past vitamin D deficiency in ten Dutch 17th to 19th-century communities of varying socioeconomic status and settlement type.
Vitamin D deficiency is evaluated in 733 individuals of both sexes and all age groups Silvolde (n = 16), Rotterdam (n = 23), Rhenen (n = 24), Noordwijkerhout (n = 27), Gouda1and 2 (n = 40; n = 59), Roosendaal (n = 51), Den Haag (n = 93), Hattem (n = 113), and Beemster (n = 287).
Rickets and residual rickets are macroscopically assessed using established criteria. Hypotheses formulated based on medico-historical texts are investigated via multivariate statistical analysis of vitamin D deficiency prevalence.
Vitamin D deficiency prevalence ranges from 13.7 % (7/51) in Roosendaal to 48.1 % (13/27) in Noordwijkerhout, with an onset of < 4 years, and higher rates in cities, conforming to medico-historical texts. Patterns of child labor are likely key.