Duffyrichard1746
Purpose Blood flow autoregulation is an intrinsic mechanism of the healthy retinal vasculature to keep blood flow constant when ocular perfusion pressure (OPP) is changed. In the present study, we set out to investigate retinal blood flow in response to an experimental decrease in OPP in healthy participants using Doppler optical coherence tomography. Methods Fifteen healthy participants aged between 22 and 31 years (mean, 27 ± 3 years) were included in the present open study. IOP was increased stepwise via the suction cup method to induce a decrease in OPP. Retinal blood flow in arteries and veins was assessed using a custom-built Doppler optical coherence tomography system and pressure-flow relationships were calculated to assess autoregulation. Results Suction cup application induced a pronounced increase in IOP with a maximum value of 50.5 ± 8.0 mm Hg at the highest level of suction. Pressure-flow relationships revealed that blood flow was autoregulated until the OPP was decreased by approximately 21 mm Hg and started to decrease significantly when the OPP was reduced by 30 mm Hg. Retinal blood flow at the last suction period decreased at a maximum of -57.0 ± 22.3% and 65.2 ± 15.4% in retinal arteries and retinal veins, respectively. These changes in retinal blood flow were less pronounced than the decrease in OPP (-75.2 ± 19.2%), indicating retinal autoregulation. Conclusions The results of the present study confirm that retinal blood flow is autoregulated in response to changes in the OPP. Doppler optical coherence tomography has the potential to become a clinical tool for the investigation of retinal blood flow autoregulation in the future, because of its ability to assess the blood velocities and diameter of the retinal vessels parallel and therefore also their blood flow in absolute values. (Clinicaltrials.gov number NCT03398616).Purpose To characterize the evolution and structure of soft drusen in aged rhesus macaques using in vivo multimodal retinal imaging and ex vivo histologic and ultrastructural analyses as a nonhuman primate model of early age-related macular degeneration (AMD). Methods Multimodal imaging including fundus photography, spectral domain optical coherence tomography (SD-OCT), and fundus autofluorescence (FAF) were used to characterize and track individual drusen lesions in 20 aged rhesus macaques (mean age 23.3 ± 2.7 years) with drusenoid lesions over 2 years, followed by semithin histologic analysis and transmission electron microscopy (TEM). Results Although most drusen gradually increased in size, a portion spontaneously regressed or collapsed over 2 years. Histologic analyses showed that soft drusen exhibit hypertrophy and dysmorphia of overlying retinal pigment epithelium (RPE), as seen in early and intermediate AMD, but do not exhibit RPE atrophy, RPE migration, or photoreceptor degeneration characteristic of advanced AMD. Ultrastructure of soft drusen showed abundant lipid particles within Bruch's membrane and AMD-related basal linear deposits (BlinD) resembling those in human drusen. Conclusions The dynamic remodeling, histologic findings, and ultrastructural features of soft drusen in aged rhesus macaques support nonhuman primates as an animal model of early AMD and reveal important insights into drusen biogenesis and AMD development.Purpose To investigate the relationship between proangiogenic and inflammatory cytokines in concurrent vitreous, aqueous, and plasma samples from patients with proliferative diabetic retinopathy (PDR). Methods Vitreous, aqueous, and plasma samples were analyzed using multiplex immunoassay for 10 PDR-related cytokines (IL-6, IL-8, TNF-α, monocyte chemoattractant protein-1 [MCP-1], macrophage inflammatory protein-1β [MIP-1β], VEGF receptor 1 [Flt-1], placental growth factor [PlGF], VEGF-A, VEGF-C, VEGF-D). A total of 17 patients with PDR and 7 controls were included. read more The primary outcome was correlation of cytokines in vitreous, aqueous, and plasma. The secondary outcome was the comparison of cytokine levels in controls and diabetics with and without recent anti-VEGF injection. Results The following factors were elevated in diabetics compared with controls vitreous IL-6, IL-8, TNF-α, MCP-1, MIP-1β, PlGF, and VEGF-A; and aqueous IL-6, IL-8, PlGF, and VEGF-C (all P 0.05). Vitreous and aqueous IL-6, IL-8, TNF-α, PlGF, and VEGF-A differed among controls and diabetics with and without recent anti-VEGF injection (all P less then 0.05). In one-to-one comparisons, aqueous VEGF-A levels were lower in diabetic patients who had recent anti-VEGF injection compared with those who did not (P = 0.01). Conclusions In this proof-of-concept study, IL-8, VEGF-A, and PlGF demonstrated a strong correlation in vitreous and aqueous of patients with PDR. The aqueous may serve as a proxy for vitreous for some cytokines involved in PDR. Recent anti-VEGF injections decreased VEGF-A levels in aqueous, but did not significantly affect other cytokines, suggesting a role for other targeted therapies in PDR management.Purpose Cone-rod dystrophy (CRD) is a rare hereditary eye disorder that causes progressive degeneration of cone and rod photoreceptors. More than 30 genes, including RAB28, have been associated with CRD; however, only a few RAB28 variants have been reported to be associated with CRD. In this study, we describe two brothers with CRD and a homozygous missense variant, c.55G>A (p.Gly19Arg), in RAB28. Methods The missense variant was identified as part of a study investigating underlying genetic defects in a large patient cohort (n = 667) using targeted next-generation sequencing of 125 genes associated with retinal dystrophy. Cellular localization of RAB28 and ciliogenesis in patient fibroblasts were investigated by immunofluorescence microscopy. The effect of the missense variant on RAB28 expression level was investigated by quantitative real-time PCR. Results Two brothers of a consanguineous couple presented with CRD, postaxial polydactyly (PAP), and myopia. Both brothers had a homozygous missense RAB28 variant located in the G1 box of the guanosine triphosphate/guanosine diphosphate binding domain of RAB28. This missense variant caused a considerable reduction of RAB28 localized to the cilia, whereas ciliogenesis seemed unaffected. Conclusions The missense variant in RAB28 is classified as likely pathogenic with functional effect on protein localization. The combination of retinal dystrophy and PAP are well known from ciliopathies; however, more data are needed to finally conclude that the RAB28 variant described here is the cause of PAP in these brothers.