Kuremathiesen9497

Z Iurium Wiki

Verze z 17. 11. 2024, 21:12, kterou vytvořil Kuremathiesen9497 (diskuse | příspěvky) (Založena nová stránka s textem „We consider real-time timely tracking of infection status (e.g., COVID-19) of individuals in a population. In this work, a health care provider wants to de…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We consider real-time timely tracking of infection status (e.g., COVID-19) of individuals in a population. In this work, a health care provider wants to detect both infected people and people who have recovered from the disease as quickly as possible. In order to measure the timeliness of the tracking process, we use the long-term average difference between the actual infection status of the people and their real-time estimate by the health care provider based on the most recent test results. We first find an analytical expression for this average difference for given test rates, infection rates and recovery rates of people. Next, we propose an alternating minimization-based algorithm to find the test rates that minimize the average difference. We observe that if the total test rate is limited, instead of testing all members of the population equally, only a portion of the population may be tested in unequal rates calculated based on their infection and recovery rates. Next, we characterize the average differeople more quickly. In order to combat any errors in the test, it may be more advantageous for the health care provider to not test everyone, and instead, apply additional tests to a selected portion of the population. In the case of people with dependent infection status, as we increase the total test rate, the health care provider detects the infected people more quickly, and thus, the average time that a person stays infected decreases. Finally, the error metric needs to be chosen carefully to meet the priorities of the health care provider, as the error metric used greatly influences who will be tested and at what test rate.Although most list-ranking frameworks are based on multilayer perceptrons (MLP), they still face limitations within the method itself in the field of recommender systems in two respects (1) MLP suffer from overfitting when dealing with sparse vectors. At the same time, the model itself tends to learn in-depth features of user-item interaction behavior but ignores some low-rank and shallow information present in the matrix. (2) Existing ranking methods cannot effectively deal with the problem of ranking between items with the same rating value and the problem of inconsistent independence in reality. We propose a list ranking framework based on linear and non-linear fusion for recommendation from implicit feedback, named RBLF. First, the model uses dense vectors to represent users and items through one-hot encoding and embedding. Second, to jointly learn shallow and deep user-item interaction, we use the interaction grabbing layer to capture the user-item interaction behavior through dense vectors of users and items. Finally, RBLF uses the Bayesian collaborative ranking to better fit the characteristics of implicit feedback. Eventually, the experiments show that the performance of RBLF obtains a significant improvement.The Fermatean fuzzy set (FFS) is a momentous generalization of a intuitionistic fuzzy set and a Pythagorean fuzzy set that can more accurately portray the complex vague information of elements and has stronger expert flexibility during decision analysis. The Combined Compromise Solution (CoCoSo) approach is a powerful decision-making technique to choose the ideal objective by fusing three aggregation strategies. In this paper, an integrated, multi-criteria group-decision-making (MCGDM) approach based on CoCoSo and FFS is used to assess green suppliers. To begin, several innovative operations of Fermatean fuzzy numbers based on Schweizer-Sklar norms are presented, and four aggregation operators utilizing the proposed operations are also developed. Several worthwhile properties of the advanced operations and operators are explored in detail. Next, a new Fermatean fuzzy entropy measure is propounded to determine the combined weight of criteria, in which the subjective and objective weights are computed by an improved best-and-worst method (BWM) and entropy weight approach, respectively. Furthermore, MCGDM based on CoCoSo and BWM-Entropy is brought forward and employed to sort diverse green suppliers. Lastly, the usefulness and effectiveness of the presented methodology is validated by comparison, and the stability of the developed MCGDM approach is shown by sensitivity analysis. The results shows that the introduced method is more stable during ranking of green suppliers, and the comparative results expound that the proposed method has higher universality and credibility than prior Fermatean fuzzy approaches.The migration and predation of grasshoppers inspire the grasshopper optimization algorithm (GOA). It can be applied to practical problems. The binary grasshopper optimization algorithm (BGOA) is used for binary problems. To improve the algorithm's exploration capability and the solution's quality, this paper modifies the step size in BGOA. The step size is expanded and three new transfer functions are proposed based on the improvement. To demonstrate the availability of the algorithm, a comparative experiment with BGOA, particle swarm optimization (PSO), and binary gray wolf optimizer (BGWO) is conducted. The improved algorithm is tested on 23 benchmark test functions. Wilcoxon rank-sum and Friedman tests are used to verify the algorithm's validity. The results indicate that the optimized algorithm is significantly more excellent than others in most functions. In the aspect of the application, this paper selects 23 datasets of UCI for feature selection implementation. The improved algorithm yields higher accuracy and fewer features.Recently, deep neural network-based image compressed sensing methods have achieved impressive success in reconstruction quality. However, these methods (1) have limitations in sampling pattern and (2) usually have the disadvantage of high computational complexity. To this end, a fast multi-scale generative adversarial network (FMSGAN) is implemented in this paper. Specifically, (1) an effective multi-scale sampling structure is proposed. It contains four different kernels with varying sizes so that decompose, and sample images effectively, which is capable of capturing different levels of spatial features at multiple scales. (2) An efficient lightweight multi-scale residual structure for deep image reconstruction is proposed to balance receptive field size and computational complexity. Q-VD-Oph datasheet The key idea is to apply smaller convolution kernel sizes in the multi-scale residual structure to reduce the number of operations while maintaining the receptive field. Meanwhile, the channel attention structure is employed for enriching useful information. Moreover, perceptual loss is combined with MSE loss and adversarial loss as the optimization function to recover a finer image. Numerous experiments show that our FMSGAN achieves state-of-the-art image reconstruction quality with low computational complexity.Poker has been considered a challenging problem in both artificial intelligence and game theory because poker is characterized by imperfect information and uncertainty, which are similar to many realistic problems like auctioning, pricing, cyber security, and operations. However, it is not clear that playing an equilibrium policy in multi-player games would be wise so far, and it is infeasible to theoretically validate whether a policy is optimal. Therefore, designing an effective optimal policy learning method has more realistic significance. This paper proposes an optimal policy learning method for multi-player poker games based on Actor-Critic reinforcement learning. Firstly, this paper builds the Actor network to make decisions with imperfect information and the Critic network to evaluate policies with perfect information. Secondly, this paper proposes a novel multi-player poker policy update method asynchronous policy update algorithm (APU) and dual-network asynchronous policy update algorithm (Dual-APU) for multi-player multi-policy scenarios and multi-player sharing-policy scenarios, respectively. Finally, this paper takes the most popular six-player Texas hold 'em poker to validate the performance of the proposed optimal policy learning method. The experiments demonstrate the policies learned by the proposed methods perform well and gain steadily compared with the existing approaches. In sum, the policy learning methods of imperfect information games based on Actor-Critic reinforcement learning perform well on poker and can be transferred to other imperfect information games. Such training with perfect information and testing with imperfect information models show an effective and explainable approach to learning an approximately optimal policy.Measures of inequality can be used to illustrate inequality between and within groups, but the choice of the appropriate measure can have different implications. This study focused on the Mean Logarithmic Deviation, the measure proposed by Theil and based on the techniques of statistical information theory. The MLD was selected because of its attractive properties fulfillment of the principle of monotonicity and the possibility of additive decomposition. The following study objectives were formulated (1) to assess the degree of inequality in the population and in the distinguished subgroups, (2) to determine the extent to which education and age influence the level of inequality, and (3) to ascertain what factors contribute to changes in the level of inequality in Poland. The study confirmed an association between the level of education and the average income of the groups distinguished on this basis. The education level of the household head remains an important determinant of household income inequality in Poland, despite the decline in the "educational bonus". The study also found that differences in the age of the household head had a smaller effect on income inequality than the level of education. However, it can be concluded that the higher share of older people may contribute to an increase in income inequality between groups, as the income from pension in Poland is more homogeneous than the income from work in younger groups. Moreover, the current paper seeks to situate Theil's approach in the context of scholarly writings since 1967.To facilitate better implementation of flood control and risk mitigation strategies, a model for evaluating the flood defense capability of China is proposed in this study. First, nine indicators such as slope and precipitation intensity are extracted from four aspects objective inclusiveness, subjective prevention, etc. Secondly, the entropy weight method in the multi-attribute decision making (MADM) model and the improved three-dimensional technique for order preference by similarity to ideal solution (3D-TOPSIS) method were combined to construct a flood defense capacity index evaluation system. Finally, the receiver operating characteristic (ROC) curve and the Taylor plot method were innovatively used to test the model and indicators. The results show that nationwide, there is fine flood defense performance in Shandong, Jiangsu and room for improvement in Guangxi, Chongqing, Tibet and Qinghai. The good representativity of nine indicators selected by the model was verified by the Taylor plot. Simultaneously, the ROC calculated area under the curve (AUC) was 70%, which proved the good problem-solving ability of the MADM-GIS model.

Autoři článku: Kuremathiesen9497 (Gilliam Kristensen)