Seeruptate2534
Inflammatory signals have emerged as critical regulators of hematopoietic stem cell (HSC) function. Specifically, HSCs are highly responsive to acute changes in systemic inflammation and this influences not only their division rate but also their lineage fate. Identifying how inflammation regulates HSCs and shapes the blood system is crucial to understanding the mechanisms underpinning these processes, as well as potential links between them.
A widening array of physiologic and pathologic processes involving heightened inflammation are now recognized to critically affect HSC biology and blood lineage production. Conditions documented to affect HSC function include not only acute and chronic infections but also autoinflammatory conditions, irradiation injury, and physiologic states such as aging and obesity.
Recognizing the contexts during which inflammation affects primitive hematopoiesis is essential to improving our understanding of HSC biology and informing new therapeutic interventions against maladaptive hematopoiesis that occurs during inflammatory diseases, infections, and cancer-related disorders.
Recognizing the contexts during which inflammation affects primitive hematopoiesis is essential to improving our understanding of HSC biology and informing new therapeutic interventions against maladaptive hematopoiesis that occurs during inflammatory diseases, infections, and cancer-related disorders.
This article addresses the connection between loneliness and physical contact. Evolutionary and psychological research has shown that touch is an important part of bond-building and emotion communication; loneliness is intimately related to these elements as well. In this paper, we ask whether physical contact reduces feelings of loneliness -which might derive from evolutionary ancient bonding mechanisms-despite a cultural context that is relatively non-tactile.
An experimental study (40 participants, 13 males) tested for observable effects of touch on loneliness scores in a low-contact culture to analyse whether they respond positively to that stimulus despite cultural training against it.
Participants exposed to physical contact reported significantly lower neglect scores from their close relationships in a short loneliness scale, thus suggesting that there is an underlying mechanism that persists despite enculturation. The effects were particularly strong among single people, which could mean that lower loneliness among married people might be partly explained by the regular availability of physical contact. Participants in the experimental condition also showed a faster reduction in heart rate, interpreted as a sign of physiological wellbeing.
These findings help to specify mechanisms within the evolutionary theoretical framework of loneliness that link internal feelings to environmental cues. This article aims at contributing to a more complex discussion on the interactions between emotions, cultural practices and psychological well-being.
These findings help to specify mechanisms within the evolutionary theoretical framework of loneliness that link internal feelings to environmental cues. This article aims at contributing to a more complex discussion on the interactions between emotions, cultural practices and psychological well-being.
In December 2019, there was an outbreak of viral disease in Wuhan, China which raised the concern across the whole world. The viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or novel coronavirus or COVID-19 (CoV-19) is known as a pandemic. After SARS-CoV and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most pathogenic virus, hazardous to humans which have raised worries concerning the capacity of current security measures and the human services framework to deal with such danger.
According to WHO, the mortality rate of COVID-19 exceeded that of SARS and MERS in view of which COVID-19 was declared as public health emergency of international concern. Coronaviruses are positive-sense RNA viruses with single stranded RNA and non-segmented envelopes. MAPK inhibitor Recently, genome sequencing confirmed that COVID-19 is similar to SARS-CoV and bat coronavirus, but the major source of this pandemic outbreak, its transmission, and mechanisms related to its pathogenicity to humans are not yet known.
In order to prevent the further pandemic and loss to humanity, scientists are studying the development of therapeutic drugs, vaccines, and strategies to cure the infections. In this review, we present a brief introduction to emerging and re-emerging pathogens, i.e., coronavirus in humans and animals, its taxonomic classification, genome organization, its replication, pathogenicity, impact on socioeconomic growth, and drugs associated with COVID-19.
In order to prevent the further pandemic and loss to humanity, scientists are studying the development of therapeutic drugs, vaccines, and strategies to cure the infections. In this review, we present a brief introduction to emerging and re-emerging pathogens, i.e., coronavirus in humans and animals, its taxonomic classification, genome organization, its replication, pathogenicity, impact on socioeconomic growth, and drugs associated with COVID-19.The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for causing coronavirus disease 2019 (COVID-19), marked the third time in the twenty-first century when a new, highly pathogenic human coronavirus outbreak has led to an epidemic. The COVID-19 epidemic has emerged in late December 2019 in Wuhan city of China and spread rapidly to other parts of the world. This quick spread of SARS-CoV-2 infection to many states across the globe affecting many people has led WHO to declare it a pandemic on March 12, 2020. As of July 4, 2020, more than 523,011 people lost their lives worldwide because of this deadly SARS-CoV-2. The current situation becomes more frightening as no FDA-approved drugs or vaccines are available to treat or prevent SARS-CoV-2 infection. The current therapeutic options for COVID-19 are limited only to supportive measures and non-specific interventions. So, the need of the hour is to search for SARS-CoV-2-specific antiviral treatments and to develop vaccines for SARS-CoV-2.