Chasebendtsen3314

Z Iurium Wiki

Verze z 17. 11. 2024, 15:57, kterou vytvořil Chasebendtsen3314 (diskuse | příspěvky) (Založena nová stránka s textem „The Ralstonia solanacearum species complex (RSSC), composed of three species and four phylotypes, are globally distributed soil-borne bacteria with a very…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The Ralstonia solanacearum species complex (RSSC), composed of three species and four phylotypes, are globally distributed soil-borne bacteria with a very broad host range. In 2009, a devastating potato bacterial wilt outbreak was declared in the central highlands of Madagascar, which reduced the production of vegetable crops including potato, eggplant, tomato and pepper. A molecular epidemiology study of Malagasy RSSC strains carried out between 2013 and 2017 identified R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II). A previously published population biology analysis of phylotypes II and III using two MultiLocus Variable Number of Tandem Repeats Analysis (MLVA) schemes revealed an emergent epidemic phylotype II (sequevar 1) group and endemic phylotype III isolates. We developed an optimized MLVA scheme (RS1-MLVA14) to characterize phylotype I strains in Madagascar to understand their genetic diversity and structure. The collection included isolates from 16 fields of different Solanaceae species sampled in Analamanga and Itasy regions (highlands) in 2013 (123 strains) and in Atsinanana region (lowlands) in 2006 (25 strains). Thirty-one haplotypes were identified, two of them being particularly prevalent MT007 (30.14%) and MT004 (16.44%) (sequevar 18). Genetic diversity analysis revealed a significant contrasting level of diversity according to elevation and sampling region. More diverse at low altitude than at high altitude, the Malagasy phylotype I isolates were structured in two clusters, probably resulting from different historical introductions. Interestingly, the most prevalent Malagasy phylotype I isolates were genetically distant from regional and worldwide isolates. In this work, we demonstrated that the RS1-MLVA14 scheme can resolve differences from regional to field scales and is thus suited for deciphering the epidemiology of phylotype I populations.Silicon is found in all plants and the accumulation of silicon can improve plant tolerance to biotic stress. Strawberry powdery mildew (Podosphaera aphanis) and two-spotted spider mite (Tetranychus urticae) are both detrimental to strawberry production worldwide. Two field trials were done on a UK commercial strawberry farm in 2014 and 2015, to assess the effects of silicon nutrient applied via the fertigation system on P. aphanis and T. urticae. The silicon treatments decreased the severity of both P. aphanis and T. urticae in two consecutive years on different cultivars. click here The percentage leaf area infected with P. aphanis mycelium from silicon treated plants were 2.19 (in 2014) and 0.41 (in 2015) compared with 3.08 (in 2014) and 0.57 (in 2015) from the untreated plants. The etiology of the pathogen as measured by the Area Under the Disease Progress Curve from silicon (with and without fungicides) treatments was 152.7 compared with 217.5 from non-silicon (with and without fungicides) treatments for the overall period of 2014-2015. The average numbers of T. urticae recorded on strawberry leaves were 1.43 (in 2014) and 1.83 (in 2015) in plants treated with silicon compared with 8.82 (in 2014) and 6.69 (in 2015) in untreated plants. The silicon contents of the leaves from the silicon alone treatment were 26.8 μg mg-1 (in 2014) and 22.2 μg mg-1 (in 2015) compared with 19.7 μg mg-1 (in 2014) and 21.4 μg mg-1 (in 2015) from the untreated. The silicon nutrient root application contributed to improved plant resilience against P. aphanis and T. urticae. Silicon could play an important role in broad spectrum control of pests and diseases in commercial strawberry production.While there is no doubt that social signals affect human reinforcement learning, there is still no consensus about how this process is computationally implemented. To address this issue, we compared three psychologically plausible hypotheses about the algorithmic implementation of imitation in reinforcement learning. The first hypothesis, decision biasing (DB), postulates that imitation consists in transiently biasing the learner's action selection without affecting their value function. According to the second hypothesis, model-based imitation (MB), the learner infers the demonstrator's value function through inverse reinforcement learning and uses it to bias action selection. Finally, according to the third hypothesis, value shaping (VS), the demonstrator's actions directly affect the learner's value function. We tested these three hypotheses in 2 experiments (N = 24 and N = 44) featuring a new variant of a social reinforcement learning task. We show through model comparison and model simulation that VS provides the best explanation of learner's behavior. Results replicated in a third independent experiment featuring a larger cohort and a different design (N = 302). In our experiments, we also manipulated the quality of the demonstrators' choices and found that learners were able to adapt their imitation rate, so that only skilled demonstrators were imitated. We proposed and tested an efficient meta-learning process to account for this effect, where imitation is regulated by the agreement between the learner and the demonstrator. In sum, our findings provide new insights and perspectives on the computational mechanisms underlying adaptive imitation in human reinforcement learning.

The timely administration of vaccines is considered to be important for both individual and herd immunity. In this study, we investigated the timeliness of the diphtheria-tetanus-whole cell pertussis-hepatitis B-Haemophilus influenzae type b (pentavalent) vaccine, scheduled at 6, 10 and 14 weeks of age in the Lao People's Democratic Republic. We also investigated factors associated with delayed immunization.

1162 children aged 8-28 months who had received the full course of the pentavalent vaccine at different levels of the health care system were enrolled. Vaccination dates documented in hospital records and/or immunisation cards were recorded. Age at vaccination and time intervals between doses were calculated. Predictors for timely completion with the pentavalent vaccine at 24 weeks were assessed by bivariate and multivariable analyses.

Several discrepancies in dates between vaccination documents were observed. In general, vaccination with the pentavalent vaccine was found to be delayed, especially in health care settings below the provincial hospital level.

Autoři článku: Chasebendtsen3314 (Mccray Thestrup)