Willifordmoore2044

Z Iurium Wiki

Verze z 17. 11. 2024, 15:26, kterou vytvořil Willifordmoore2044 (diskuse | příspěvky) (Založena nová stránka s textem „We study the compression and extension response of single dsDNA (double-stranded DNA) molecules confined in cylindrical channels by means of Monte Carlo si…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We study the compression and extension response of single dsDNA (double-stranded DNA) molecules confined in cylindrical channels by means of Monte Carlo simulations. The elastic response of micrometer-sized DNA to the external force acting through the chain ends or through the piston is markedly affected by the size of the channel. The interpretation of the force (f)-displacement (R) functions under quasi-one-dimensional confinement is facilitated by resolving the overall change of displacement ΔR into the confinement contribution ΔRD and the force contribution ΔRf. The external stretching of confined DNA results in a characteristic pattern of f-R functions involving their shift to the larger extensions due to the channel-induced pre-stretching ΔRD. A smooth end-chain compression into loop-like conformations observed in moderately confined DNA can be accounted for by the relationship valid for a Gaussian chain in bulk. In narrow channels, the considerably pre-stretched DNA molecules abruptly buckle on compression by the backfolding into hairpins. On the contrary, the piston compression of DNA is characterized by a gradual reduction of the chain span S and by smooth f-S functions in the whole spatial range from the 3d near to 1d limits. The observed discrepancy between the shape of the f-R and f-S functions from two compression methods can be important for designing nanopiston experiments of compaction and knotting of single DNA in nanochannels.Ammonium aminodiboranate (AADB) and diammoniate of diborane (DADB) are two isomers of ammonia borane (AB), which have been intensively studied for hydrogen storage. Their high hydrogen contents give them the high potential to serve as hydrogen storage materials. To explore their dehydrogenation pathways, molecular dynamics (MD) simulations with a reactive force field (ReaxFF) were applied. Temperature ramping simulations of their thermolysis were carried out. For AADB, at low temperatures, its hydrogen release can be realized mainly via intermolecular dehydrogenations. As the temperature of the simulated system increases, the formations of B-N bonds begin to occur. In the case of DADB, we found that this molecule could release hydrogen at a lower temperature with the cleavage of the B-N bond. The compositional analysis of the simulated systems was also conducted to monitor the potential intermediates along their dehydrogenation pathways. Our current work provides a detailed picture of the initial dehydrogenation steps of AADB and DADB and highlights the difference in their respective dehydrogenation processes.CD73 inhibitors are promising drugs for the (immuno)therapy of cancer. Here, we present the synthesis, structure-activity relationships, and cocrystal structures of novel derivatives of the competitive CD73 inhibitor α,β-methylene-ADP (AOPCP) substituted in the 2-position. Small polar or lipophilic residues increased potency, 2-iodo- and 2-chloro-adenosine-5'-O-[(phosphonomethyl)phosphonic acid] (15, 16) being the most potent inhibitors with Ki values toward human CD73 of 3-6 nM. Subject to the size and nature of the 2-substituent, variable binding modes were observed by X-ray crystallography. Depending on the binding mode, large species differences were found, e.g., 2-piperazinyl-AOPCP (21) was >12-fold less potent against rat CD73 compared to human CD73. This study shows that high CD73 inhibitory potency can be achieved by simply introducing a small substituent into the 2-position of AOPCP without the necessity of additional bulky N6-substituents. Moreover, it provides valuable insights into the binding modes of competitive CD73 inhibitors, representing an excellent basis for drug development.The main protease of coronaviruses and the 3C protease of enteroviruses share a similar active-site architecture and a unique requirement for glutamine in the P1 position of the substrate. Because of their unique specificity and essential role in viral polyprotein processing, these proteases are suitable targets for the development of antiviral drugs. In order to obtain near-equipotent, broad-spectrum antivirals against alphacoronaviruses, betacoronaviruses, and enteroviruses, we pursued a structure-based design of peptidomimetic α-ketoamides as inhibitors of main and 3C proteases. Six crystal structures of protease-inhibitor complexes were determined as part of this study. Compounds synthesized were tested against the recombinant proteases as well as in viral replicons and virus-infected cell cultures; most of them were not cell-toxic. Optimization of the P2 substituent of the α-ketoamides proved crucial for achieving near-equipotency against the three virus genera. The best near-equipotent inhibitors, 11u (P2 = cyclopentylmethyl) and 11r (P2 = cyclohexylmethyl), display low-micromolar EC50 values against enteroviruses, alphacoronaviruses, and betacoronaviruses in cell cultures. In Huh7 cells, 11r exhibits three-digit picomolar activity against the Middle East Respiratory Syndrome coronavirus.Highly luminescent inks are desirable for various applications such as decorative coating, art painting, and anticounterfeiting, to name a few. However, present inks display low photoluminescent efficiency requiring a strong excitation light to make them glow. Here, we report a highly luminescent ink based on the copper-iodide/1-Propyl-1,4-diazabicyclo[2.2.2]octan-1-ium (Cu4I6(pr-ted)2) hybrid cluster with a quantum efficiency exceeding 98%. CL14377 Under the interaction between the Cu4I6(pr-ted)2 hybrid cluster and polyvinylpyrrolidone (PVP), the highly luminescent Cu4I6(pr-ted)2/PVP ink can be facilely prepared via the one-pot solution synthesis. The obtained ink exhibits strong green light emission that originates from the efficient phosphorescence of Cu4I6(pr-ted)2 nanocrystals. Attractively, the ink displays high conversion efficiency for the ultraviolet light to bright green light emission due to its wide Stokes shift, implying great potential for anticounterfeiting and luminescent solar concentrator coating.Leukotrienes (LTs) are proinflammatory mediators derived from arachidonic acid (AA), which play significant roles in inflammatory diseases. The 5-lipoxygenase-activating protein (FLAP) is an integral membrane protein, which is essential for the initial step in LT biosynthesis. The aim of this study was to discover novel and chemically diverse FLAP inhibitors for treatment of inflammatory diseases requiring anti-LT therapy. Both ligand- and structure-based approaches were applied to explain the activities of known FLAP inhibitors in relation to their predicted binding modes. We gained valuable insights into the binding modes of the inhibitors by molecular modeling and generated a multistep virtual screening (VS) workflow in which 6.2 million compounds were virtually screened, and the molecular hypotheses were validated by testing VS-hit compounds biologically. The most potent hit compounds showed significant inhibition of FLAP-dependent cellular LT biosynthesis with IC50 values in the range from 0.13 to 0.87 μM.

Autoři článku: Willifordmoore2044 (Snyder Hjelm)