Richardssanford9712
To explore the diversity of bacterial community structure between different layers of agarwood, Hiseq(high-throughput sequencing) was used to analyze the bacterial community structure of samples from different layers of agarwood. Our results showed that 1 150 096 optimized sequences and 9 690 OTUs were obtained from 15 samples of 5 layers of agarwood, which belonged to 28 bacterial phyla, 61 classes, 110 orders, 212 families and 384 genera. Further analysis revealed that the normal layer(NL) had the lowest bacterial species richness and the smallest number of OTUs. And the total number of OTUs of the agarwood layer(AL) and NL was zero, which was quite different.At the same time, there were significant differences in bacterial community structure and species diversity between NL and the other four layers. While there were some common dominant bacterial genera in both transition layer(TL) and NL. The similarity of bacterial distribution in 4 non-NL layers was relatively high, which had four common genera, such as Acidibacter, Bradyrhizobium, Acidothemus and Sphingomonas. While Acidibacter, Bradyrhizobium and Acidothemus were the dominant bacterial genus of DA and AL, and all of these layers contained volatile oil. In addition, the Bradyrhizobium was the most abundant in agarwood layer. Our results showed that bacterial community diversity and abundance were decreasing from DL to AL, and different layers showed significant differences in bacterial enrichment. It provided the clues to investigate how bacteria participate in the formation of agarwood.Wild Angelica sinensis is almost endangered, studying the biological characteristics of wild A. sinensis seeds is helpful for varietal improvement and its conservation. This paper systematically studied the morphological structure, thousand seed weight, viability, storage and other basic biological characteristics of wild A. sinensis fruits and seeds, and focused on the germination of excised embryos,the development of embryo, the effects of the temperature,light and hormones on seed germination.The study found that①The embryos are not fully developed when harvested, the initial germination rate was low, the embryos can develop. After 15 days of low temperature storage, the embryos can develop completely and the germination rate is significantly increased. These results show that wild A. sinensis seeds have no dormancy, and the low germination rate is due to the low maturity of wild A. sinensis seeds. ②The sui-table germination temperature of wild A. sinensis is 15-25 ℃,and the optimal temperature is 20 ℃. Light does not affect the germination of A. sinensis seeds.③The applicable concentration of GA_3 can promote seeds germination, IAA and 6-BA has no significant effect on germination.④The optimum storage condition is dry storage at 4 ℃. Wild A. https://www.selleckchem.com/products/erastin2.html sinensis seeds can be stored for 1.5 years and cultivated seeds can be stored for 1 year.During the introduction and conservation, the best treatment conditions were dry storage at 4 ℃ for 30 d and soaking seeds with 200 mg·L~(-1) GA_3, the germination rate can reach 86.7%.Traditional Chinese medicine boasts aunique theoretical system and rich practical experience. However, traditional Chinese medicine has an unclear material basis, vague pharmacological mechanism, and potential toxicity, which is the key factor to hinder its modernization and wide application. Therefore, when the physico-chemical analysis of chemical components of traditional Chinese medicine is insufficient to reflect the characteristics and mechanisms, the multi-target biological system correlation analysis in conformity to the holistic view of the basic theory of traditional Chinese medicine has gradually attracted wide attention. Specifically, bile acids, as an important endogenous metabolite in the body, play an important role in regulating digestion, absorption and metabolism of nutrients, and greatly impact the health. In recent years, a number of studies have been made on the metabolism pathway of bile acids and their important regulatory effects in body metabolism, making bile acids as a significant target of traditional Chinese medicine on the body. In view of this, based on bile acid metabolism, the paper reviewed the biological functions of bile acids in regulating body metabolism and its interaction with intestinal microbiota, providing a basis for exploring the connotation of bile acid metabolism changes under physiological/pathological conditions of the body. The study progress of bile acid metabolism in traditional Chinese medicine efficacy/toxic mechanism is further reviewed, which provides a basis for exploring the efficacy and hepatotoxicity mechanism of traditional Chinese medicine with bile acid as a biomarker, thereby laying a foundation for the clinical safety of traditional Chinese medicine.Animal medicines have been called "medicine with affinity to flesh and blood" by doctors of all ages, which always act as an important branch of Chinese medicine. They have various types, extensive sources and long application history, with unique cli-nical effects in anti-coagulation, anti-thrombosis, anti-fatigue, immune regulation, anti-tumor, anti-convulsion and so on. Most animal medicines contain proteins, fatty acids, and trimethylamine oxides, which are prone to decomposition and produce substances such as biological amines, aldehydes, ketones, alcohols, trimethylamine and ammonia with unpleasant odors. The stench produced by the combination of various odors can easily cause side effects such as nausea and vomiting, which would probably affect the drug compliance and clinical efficacy in patients, and block the development of high-quality animal medicines. At present, we have insufficient understanding on sources and formation mechanism of the stench of animal medicines, lacking development of taste-masking technology. Therefore, the universality, formation, vomiting mechanism, evaluation methods, and masking technology of stench of animal medicines were summarized in this paper, so as to deepen the recognition of stench, provide references for the development of animal medicines deodorization technology, enhance patients' compliance with animal medicines, and promote animal drugs to better serve public health in the new era.