Castillotyson5242
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.dl-3-n-butylphthalide (dl-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, α-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (α-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of α-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. GDC-0973 cell line Furthermore, possible neuroprotective effects of α-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in α-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-α). Exogenous administration of α-MSH (250μg/kg) together with MSCs (1×106) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of α-MSH (100μg), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of α-MSH and BDNF and decreased the TNF-α in SD with CHI. These observations are the first to show that TiO2 nanowired administration of α-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.Despite significant improvement in understanding of molecular underpinnings driving glioblastoma, there is minimal improvement in overall survival of patients. This poor outcome is caused in part by traditional designs of early phase clinical trials, which focus on clinical assessments of drug toxicity and response. Window of opportunity trials overcome this shortcoming by assessing drug-induced on-target molecular alterations in post-treatment human tumor specimens. This article provides an overview of window of opportunity trials, including novel designs for incorporating biologic end points into early stage trials in context of brain tumors, and examples of successfully executed window of opportunity trials for glioblastoma.Whenever possible, maximal safe resection is the first intervention for management of glioblastoma. Resection offers tissue for diagnosis, decompression of the brain, cytoreduction, and has been associated with prolonged survival in numerous retrospective studies. In this review, we provide a critical overview of the literature associating glioblastoma resection with survival. We discuss techniques that enhance extent of resection, and the role of clinical and surgeon-variables. At last, we analyze the covariates and confounders that might influence the relationship between extent of resection and survival for glioblastoma, as these might ultimately also influence outcomes and other therapeutic interventions tested in trials.Although surgical resection of the solid tumor component of glioblastoma has been shown to provide a survival advantage, it will never be a curative procedure. Yet, systemically applied adjuvants (radiation therapy and chemotherapy) also are not curative and their options are limited by the inability of most agents to cross the blood-brain barrier. Direct delivery of adjuvant therapies during a surgical procedure potentially provides an approach to bypass the blood-brain barrier and effectively treat residual tumor cells. This article summarizes the approaches and therapeutics that have been evaluated to date, and challenges that remain to be overcome.