Kondrupshaw3332
Preexposure to a low concentration of H2O2 significantly increases the survivability of catalase-negative streptococci in the presence of a higher concentration of H2O2 However, the mechanisms of this adaptation remain unknown. Here, using a redox proteomics assay, we identified 57 and 35 cysteine-oxidized proteins in Streptococcus oligofermentans bacteria that were anaerobically cultured and then pulsed with 40 μM H2O2 and that were statically grown in a 40-ml culture, respectively. The oxidized proteins included the peroxide-responsive repressor PerR, the manganese uptake repressor MntR, thioredoxin system proteins Trx and Tpx, and most glycolytic proteins. Cysteine oxidations of these proteins were verified through redox Western blotting, immunoprecipitation, and liquid chromatography-tandem mass spectrometry assays. In particular, Zn2+-coordinated Cys139 and Cys142 mutations eliminated the H2O2 oxidation of PerR, and inductively coupled plasma mass spectrometry detected significantly decreased amounts of s of cellular manganese, in coping with oxidative stress. The adaptation mechanism could also be applied in oral hygiene by facilitating the fitness and adaptability of the oral commensal streptococci to suppress the pathogens. Copyright © 2020 Tong et al.Lifestyle factors, such as diet, strongly influence the structure, diversity, and composition of the microbiome. While we have witnessed over the last several years a resurgence of interest in fermented foods, no study has specifically explored the effects of their consumption on gut microbiota in large cohorts. To assess whether the consumption of fermented foods is associated with a systematic signal in the gut microbiome and metabolome, we used a multi-omic approach (16S rRNA amplicon sequencing, metagenomic sequencing, and untargeted mass spectrometry) to analyze stool samples from 6,811 individuals from the American Gut Project, including 115 individuals specifically recruited for their frequency of fermented food consumption for a targeted 4-week longitudinal study. We observed subtle but statistically significant differences between consumers and nonconsumers in beta diversity as well as differential taxa between the two groups. We found that the metabolome of fermented food consumers was enriched with is enriched in conjugated linoleic acid, thought to be beneficial. The results suggest that further studies of specific kinds of fermented food and their impacts on the microbiome and health will be useful. Copyright © 2020 Taylor et al.Sewage overflows, agricultural runoff, and stormwater discharges introduce fecal pollution into surface waters. Distinguishing these sources is critical for evaluating water quality and formulating remediation strategies. With the falling costs of sequencing, microbial community-based water quality assessment tools are under development. However, their application is limited by the need to build reference libraries, which requires extensive sampling of sources and bioinformatic expertise. Here, we introduce FORest Enteric Source IdentifiCation (FORENSIC; https//forensic.sfs.uwm.edu/), an online, library-independent source tracking platform based on random forest classification and 16S rRNA gene amplicon sequences to identify in environmental samples common fecal contamination sources, including humans, domestic pets, and agricultural animals. FORENSIC relies on a broad reference signature database of Bacteroidales and Clostridiales, two predominant bacterial groups that have coevolved with their hosts. GSK690693 order As a rrRNA gene. We demonstrated that we could use V4V5 reads trimmed to the V4 positions to generate the reference signature. The systematic workflow we describe to create and validate the signatures could be applied to many disciplines. With the increasing gap between advancing technology and practical applications, this platform makes sequence-based water quality assessments accessible to the public health and water resource communities. Copyright © 2020 Roguet et al.Vibrio parahaemolyticus is an important foodborne pathogen and has recently gained particular notoriety because it causes acute hepatopancreatic necrosis disease (AHPND) in shrimp, which has caused significant economic loss in the shrimp industry. Here, we report a whole-genome analysis of 233 V. parahaemolyticus strains isolated from humans, diseased shrimp, and environmental samples collected between 2008 and 2017, providing unprecedented insight into the historical spread of AHPND. The results show that V. parahaemolyticus is genetically diverse and can be divided into 84 sequence types (STs). However, genomic analysis of three STs of V. parahaemolyticus identified seven transmission routes in Asia since 1996, which promoted the transfer of an AHPND-associated plasmid. Notably, the insertion sequence (ISVal1) from the plasmid subsequently mediated the genetic exchange among V. parahaemolyticus STs and resulted in the deletion of an 11-kb region regulating cell mobility and the production of capsular polysaconsists of two steps, the transregional dissemination of V. parahaemolyticus and the horizontal transfer of an AHPND-associated plasmid. Surprisingly, the introduction of the AHPND-associated plasmid also offers a novel mechanism of genetic exchange mediated by insertion sequences, and it improved the fitness of V. parahaemolyticus in a harsh environment. The results presented herein suggest that current shrimp farming practices promote genetic mixture between endemic and oceanic V. parahaemolyticus populations, which introduced the plasmid and accelerated bacterial adaptation by the acquisition of ecologically important functions. This entails a risk of the emergence of new virulent populations both for shrimp and humans. This study improves our understanding of the global dissemination of the AHPND-associated plasmid and highlights the urgent need to improve biosecurity for shrimp farming. Copyright © 2020 Fu et al.Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic anaerobic bacteria with complementary metabolic capabilities that utilize distinct glycolytic pathways for the conversion of cellulosic sugars to biofuels. We integrated quantitative metabolomics with 2H and 13C metabolic flux analysis to investigate the in vivo reversibility and thermodynamics of the central metabolic networks of these two microbes. We found that the glycolytic pathway in C. thermocellum operates remarkably close to thermodynamic equilibrium, with an overall drop in Gibbs free energy 5-fold lower than that of T. saccharolyticum or anaerobically grown Escherichia coli The limited thermodynamic driving force of glycolysis in C. thermocellum could be attributed in large part to the small free energy of the phosphofructokinase reaction producing fructose bisphosphate. The ethanol fermentation pathway was also substantially more reversible in C. thermocellum than in T. saccharolyticum These observations help explain the comparatively low ethanol titers of C.