Danielcampbell5653
Novel highly stereoselective syntheses of (+)-streptol and (-)-1-epi-streptol starting from naturally abundant (-)-shikimic acid were described in this article. (-)-Shikimic acid was first converted to the common key intermediate by 11 steps in 40% yield. It was then converted to (+)-streptol by three steps in 72% yield, and it was also converted to (-)-1-epi-streptol by one step in 90% yield. In summary, (+)-streptol and (-)-1-epi-streptol were synthesized from (-)-shikimic acid by 14 and 12 steps in 29 and 36% overall yields, respectively.Calcium batteries are promising alternatives to lithium batteries owing to their high energy density, comparable reduction potential, and mineral abundance. However, to meet practical demands in high-performance applications, suitable electrolytes must be developed. Here, we report the synthesis and characterization of polymer gel electrolytes for calcium-ion conduction prepared by the photo-cross-linking of poly(ethylene glycol) diacrylate (PEGDA) in the presence of solutions of calcium salts in a mixture of ethylene carbonate (EC) and propylene carbonate (PC) solvents. The results show room-temperature conductivity between 10-5 and 10-4 S/cm, electrochemical stability windows of ∼3.8 V, full dissociation of the salt, and minimal coordination with the PEGDA backbone. RHPS 4 clinical trial Cycling in symmetric Ca metal cells proceeds but with increasing overpotentials, which can be attributed to interfacial impedance between the electrolyte and calcium surface, which inhibits charge transfer. Calcium may still be plated and stripped yielding high-purity deposits and no indication of significant electrolyte breakdown, indicating that high overpotentials are associated with an electrically insulating, yet ion-permeable solid electrolyte interface (SEI). This work provides a contribution to the study and understanding of polymer gel materials toward their improvement and application as electrolytes for calcium batteries.In this paper, phosphoric acid (H3PO4), hydrochloric acid (HCl), and hydrogen peroxide (H2O2) were employed for the modification of oil-based drill cutting ash (OBDCA) for the first time. The adsorption of rhodamine B (RhB) on modified oil-based drill cutting ash (MOBDCA) in an aqueous medium was investigated. H2O2-modified OBDCA had the optimal adsorption efficiency for RhB. The physical and chemical properties of MOBDCA were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ζ-potential, N2 adsorption-desorption isotherm, and pore size distribution. The effect of the pH value (3-11), reaction time (10-720 min), and initial RhB concentration (10-200 mg/L) on RhB adsorption was discussed. The adsorption kinetics highly fitted with the pseudo-second-order model (R 2 > 0.99), which indicated that the adsorption process was dominated by chemisorption. The adsorption isotherm fitted well with the Langmuir and Freundlich models (R 2 > 0.97), which indicated the monolayer adsorption process and the heterogeneous adsorption process, respectively. The theoretic adsorption capacity (50 mg/g) for RhB was achieved by H2O2-modified OBDCA. This paper provides a promising method of resource utilization of OBDCA to treat organic pollutants.Nanostructured titanium dioxide (TiO2) has a potential platform for the removal of organic contaminants, but it has some limitations. To overcome these limitations, we devised a promising strategy in the present work, the heterostructures of TiO2 sensitized by molybdenum disulfide (MoS2) nanoflowers synthesized by the mechanochemical route and utilized as an efficient photocatalyst for methyl orange (MO) degradation. The surface of TiO2 sensitized by MoS2 was comprehensively characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence spectroscopy (PL), Brunauer-Emmett-Teller (BET) surface area, and thermogravimetric analysis (TGA). From XRD results, the optimized MoS2-TiO2 (5.0 wt %) nanocomposite showcases the lowest crystallite size of 14.79 nm than pristine TiO2 (20 nm). The FT-IR and XPS analyses of the MoS2-TiO2 nanocomposite exhibit the strong interaction between MoS2 and TiO2. The photocatalytic results show that sensitization of TiO2 by MoS2 drastically enhanced the photocatalytic activity of pristine TiO2. According to the obtained results, the optimal amount of MoS2 loading was assumed to be 5.0 wt %, which exhibited a 21% increment of MO photodegradation efficiency compared to pristine TiO2 under UV-vis light. The outline of the overall study describes the superior photocatalytic performance of 5.0 wt % MoS2-TiO2 nanocomposite which is ascribed to the delayed recombination by efficient charge transfer, high surface area, and elevated surface oxygen vacancies. The context of the obtained results designates that the sensitization of TiO2 with MoS2 is a very efficient nanomaterial for photocatalytic applications.In the present study, we have identified an ω-transaminase (ω-TA) from Chloroflexi bacterium from the genome database by using two ω-TA sequences (ATA117 Arrmut11 from Arthrobacter sp. KNK168 and amine transaminase from Aspergillus terreus NIH2624) as templates in a BLASTP search and motif sequence alignment. The protein sequence of the ω-TA from C. bacterium (CbTA) shows 38% sequence identity to that of ATA117 Arrmut11. The gene sequence of CbTA was inserted into pRSF-Duet1 and functionally expressed in Escherichia coli BL21(DE3). The results showed that the recombinant CbTA has a specific activity of 1.19 U/mg for (R)-α-methylbenzylamine [(R)-MBA] at pH 8.5 and 45 °C. The substrate acceptability test showed that CbTA has significant reactivity to aromatic amino donors and amino receptors. More importantly, CbTA also exhibited good affinity toward some cyclic substrates. The homology model of CbTA was built by Discovery Studio, and docking was performed to describe the relative activity toward some substrates.