Lauridsenbuchanan3272
In this issue of Developmental Cell, Doyle and colleagues identify periodic anterior contraction as a characteristic feature of fibroblasts and mesenchymal cancer cells embedded in 3D collagen gels. This contractile mechanism generates a matrix prestrain required for crawling in fibrous 3D environments.In this issue of Developmental Cell,Yang et al. (2021) discover that, RHEB traffics to mitochondria to promote energy production by stimulating pyruvate dehydrogenase to convert pyruvate to acetyl-CoA.In this issue of Developmental Cell, Chuyen et al. (2021) suggest that the Scf/Kit pathway controls mutual repulsion of multiciliated cells and their affinity for epidermal cell junctions through soluble and membrane-associated Scf ligands, respectively. Effective self-organizational patterning emerges at the mesoscopic scale as a small set of effective behaviors.Apoptosis repressor with caspase recruitment domain (ARC) is an established cytoplasmic anti-apoptotic factor relevant for cancer and metabolic disease. In this issue of Developmental Cell, McKimpson et al. show that ARC can assume potent pro-apoptotic effects in β cells of the endocrine pancreas via translocation to the nucleus.The coupling of sanitation system and agriculture production is essential to mitigate the environmental burden and offset unsustainable fertilizer utilization by employing resource-oriented sanitation. Yet, the economic feasibility and energy recovery potential from domestic waste have rarely been investigated. To assess four scenarios (whether with kitchen waste separation; whether with energy recovery) in the resource-oriented sanitation system, an integrated assessment framework based on energy analysis and techno-economic analysis is employed to investigate the comprehensive sanitation system including both wastewater treatment and solid waste disposal. The results show that energy recovery from human excreta and kitchen waste can offset the energy consumption of the sanitation system and the energy surplus can even be 1067.70 kJ·PE-1·day-1. The optimum covering range of the regional recovery center was quantified from the balance between scale effect and spatial distribution, and the serving inhabitants need to be more than 2800.Neurexins are central to trans-synaptic cell adhesion and signaling during synapse specification and maintenance. The past two decades of human genetics research have identified structural variations in the neurexin gene family, in particular NRXN1 copy number variants (CNVs), implicated in multiple neuropsychiatric and developmental disorders. The heterogeneity and reduced penetrance of NRXN1 deletions, in addition to the pleiotropic, circuit-specific functions of NRXN1, present substantial obstacles to understanding how compromised NRXN1 function predisposes individuals to neuropsychiatric disorders. JNK inhibitor mw Here, we provide an updated review of NRXN1 genetics in disease, followed by recently published work using both human induced pluripotent stem cell (iPSC) derived systems and animal models to understand the mechanisms of disease pathophysiology. Finally, we suggest our outlook on how the field should progress to improve our understanding of neurexin mediated disease pathogenesis. We believe that understanding how structural genetic variants in NRXN1 contribute to disease pathophysiology requires parallel approaches in iPSC and mouse model systems, each leveraging their unique strengths - analysis of genetic interactions and background effects in iPSCs and neural circuit and behavioral analysis in mice.Ozonation is an important process to further reduce the trace organic chemicals (TrOCs) in treated municipal wastewater before discharge into surface waters, and is expected to form products that are more oxidized and more polar than their parent compounds. Many of these ozonation products (OPs) are biodegradable and thus removed by post-treatment (e.g., aldehydes). Most studies on OPs of TrOCs in wastewater rely on reversed-phase liquid chromatography- mass spectrometry (RPLC-MS), which is not suited for highly polar analytes. In this study, supercritical fluid chromatography combined with high resolution MS (SFC-HRMS) was applied in comparison to the generic RPLC-HRMS to search for OPs in ozonated wastewater treatment plant effluent at pilot-scale. While comparable results were obtained from these two techniques during suspect screenings for known OPs, a total of 23 OPs were only observed by SFC-HRMS via non-targeted screening. Several SFC-only OPs were proposed as the derivatives of methoxymethylmelamines, phenolic sulfates/sulfonates, and metformin; the latter was confirmed by laboratory-scale ozonation experiments. A complete ozonation pathway of metformin, a widespread and extremely hydrophilic TrOC in aquatic environment, was elaborated based on SFC-HRMS analysis. Five of the 10 metformin OPs are reported for the first time in this study. Three different dual-media filters were compared as post-treatments, and a combination of sand/anthracite and fresh post-granular activated carbon proved most effective in OPs removal due to the additional adsorption capacity. However, six SFC-only OPs, two of which originating from metformin, appeared to be persistent during all post-treatments, raising concerns on their occurrence in drinking water sources impacted by wastewater.Manganese (Mn) oxides are ubiquitous in the environment and have strong reactivity to induce the transformation of various contaminants. However, whether reactive oxygen species contribute to their surface reactivity remains unclear. Here, sustainable production of superoxide radicals (O2•-) by various MnO2 polymorphs in the dark was quantified and the mechanisms involved were explored. The results confirm that O2•- was produced through one-electron transfer from surface Mn(III) to adsorbed O2. In contrast, no H2O2 was detected due to its decomposition by Mn oxides to form O2•- and Mn(III), leading to the sustained production of O2•- on Mn oxide surfaces. In addition, the production of O2•- was found to make a clear contribution (4 - 28%) to the transformation of a series of halophenols by MnO2, suggesting that the O2•--mediated surface reaction is an important supplement to the direct electron-transfer mechanism in the reactivity of Mn oxides. These findings advance our understanding of the surface reactivity of Mn oxides and also reveal an important but hitherto unrecognized abiotic source of O2•- in the natural environment.