Bullockkok6828

Z Iurium Wiki

Verze z 16. 11. 2024, 22:23, kterou vytvořil Bullockkok6828 (diskuse | příspěvky) (Založena nová stránka s textem „However, N-acetyl cysteine (NAC), a potent antioxidant, reversed the upregulated mRNA expression of c-Jun, as well as the enhanced ROS production, the diso…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

However, N-acetyl cysteine (NAC), a potent antioxidant, reversed the upregulated mRNA expression of c-Jun, as well as the enhanced ROS production, the disorder of MMP and the apoptosis of HSC-3 cells induced by LH. These results suggested that LH may induce HSC-3 cell apoptosis via the ROS-mediated mitochondrial apoptotic pathway and the JNK signaling pathway, which indicated that LH may be a potential drug candidate for anti-OSCC therapy.Chemotherapy drug 5-fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC); however, 5-FU resistance decreases CRC therapeutic efficiency. A previous study revealed that microRNA (miR)-9-5p serves an antitumor effect in CRC. However, the effect of miR-9-5p in CRC chemoresistance remains unknown. In the present study, two CRC cell lines, including HT-29 and HCT-116 cells, were used to investigate the impact of miR-9-5p in overcoming 5-FU resistance. The results revealed that treatment with 5-FU decreased CRC cell viability and upregulated miR-9-5p expression in both CRC cells. Knockdown of miR-9-5p decreased HCT-116 cell sensitivity to 5-FU and inhibited apoptosis. By contrast, miR-9-5p overexpression enhanced the sensitivity of HT-29 cells to 5-FU and induced apoptosis. Additionally, it was confirmed that miR-9-5p directly targeted high mobility group A2 (HMGA2). HMGA2 overexpression reversed miR-9-5p-induced HT-29 apoptosis. The present study indicated that miR-9-5p enhanced the sensitivity of CRC cells to 5-FU via downregulating HMGA2 expression.The p53-upregulated modulator of apoptosis (PUMA) has been reported to be involved in various types of cancer. However, its potential biological role in gallbladder carcinoma (GBC) has not been fully elucidated. The present study aimed to determine the expression levels of PUMA and its biological effects on GBC. see more The mRNA and protein expression levels of PUMA in GBC tissues and cell lines were measured using reverse transcription-quantitative PCR and western blotting, respectively. The effects of PUMA overexpression on cell viability, proliferation and invasive ability were determined in vitro using the MTT, colony formation and Transwell invasion assays, respectively. The apoptotic rates were detected using the Annexin V-FITC apoptosis detection kit. Furthermore, follow-up of patients with GBC was performed to identify the association between PUMA expression levels and GBC prognosis. The results of the present study demonstrated that the expression levels of PUMA were significantly lower in the GBC tissues and cell lines compared with those in adjacent normal gallbladder tissues and normal gallbladder cells, respectively. Further experiments indicated that overexpression of PUMA inhibited the viability, proliferation and invasive ability of GBC cells compared with those in the control-transfected GBC cells. In addition, overexpression of PUMA significantly promoted apoptosis in GBC cells. Furthermore, overexpression of PUMA inhibited epithelial-mesenchymal transition, and promoted Bax upregulation and Bcl-2 downregulation compared with those in the control group. Low PUMA expression levels were associated with a short overall survival time in patients with GBC. In conclusions, PUMA may act as a tumor suppressor in GBC and may serve as a potential novel treatment target for human GBC.Liver cancer ranks as the second leading cause of cancer-associated mortality worldwide. To date, neither current ablation therapy nor chemotherapy are considered ideal in improving the outcome of liver cancer. Therefore, more effective therapies for treating this devastating disease are urgently required. Interventional therapy has been used for numerous years in the treatment of different types of cancer, and is characterized by the direct delivery of anticancer drugs into the tumor. It has been reported that antimalarial chloroquine diphosphate (CQ) exerts effective anticancer activity against several types of cancer. However, its effect on liver cancer remains unclear. Therefore, in the present study, 2D monolayer cell culture and 3D spheroid in vitro models, and a rat model, were utilized to investigate the effect of CQ on liver cancer. CQ demonstrated an effective anticancer effect on HepG2 cells and 3D liver spheroids. Furthermore, the drug significantly inhibited cell growth and viability in the 2D and 3D in vitro models. The CQ-based intervention treatment effectively attenuated tumor size and weight, increased food intake and consumption of drinking water, and improved body weight and survival rate of rats in the in vivo model. In addition, treatment with CQ potently increased the expression levels of the apoptosis-related genes. Taken together, the findings of the present study may provide a novel insight into the development of safe and effective treatments for liver cancer.MicroRNAs (miRNAs/miRs) are known to play a key role in tumorigenesis and usually serve as therapeutic targets in cancer treatment. In the present study, the inhibitory effects and the targeting miRNAs of withaferin A (WA) were investigated in human lung cancer cells. Different lung cancer cell lines were administrated with different concentrations of WA for different time interval followed by western blot or reverse transcription-quantitative PCR analyses to determine the underlying signaling pathway. The results demonstrated that WA decreased the viability of lung cancer cells in a caspase-dependent manner. Further investigations indicated that treatment with WA induced the expression of proapoptotic molecules, p53 and Bax, and decreased Bcl-2 expression in A549 cells. Notably, the results demonstrated that WA also decreased the motility of lung cancer cells in a dose-dependent manner, at a relatively lower concentration. Western blot analysis revealed increased E-cadherin and decreased vimentin expression miR-27a, and higher motility and viability following treatment with WA. However, suppression of miR-10b and miR-27a effectively decreased motility and viability, respectively, following treatment with WA. Taken together, the results of the present study suggest that WA inhibits the functionality of lung cancer cells by decreasing the expression levels of both miR-10b and miR-27a in a p53-dependent manner.

Autoři článku: Bullockkok6828 (Tucker Mcintosh)