Rowlandflowers9085
Herein, an orbitron-like three-dimensional (3D) DNA clip-based nanomachine was proposed for ultrasensitive fluorescent bioassay of microRNA, which was constructed by mechanically interlocking double-DNA-ring with two single-stranded DNAs, performing an orbitron-like 3D structure with double freely rotated DNA rings as the open state. In the presence of target microRNA, the proposed orbitron-like 3D DNA clip can alter its structure from open to closed state in identification of the target microRNA, generating the closure between the previously modified fluorescent dyes and the quenchers to perform a "signal off" fluorescent signal correlated with the concentration of target microRNA. Compared with the normal DNA nanomachines, such as DNA tweezers constructed by self-assembly of three single-stranded DNAs which regulated the open and closed states on the basis of linear conformational changes, the proposed 3D DNA clip-based nanomachine with high mechanical rigidity realized the conformational changes in 3D space with the assistance of target microRNA, which could effectively increase the adjustable distance range and reduce the background signal. Furthermore, the 3D DNA clip-based nanomachine was applied in the fluorescent detection of microRNA-21 with favorable performances for the sensitive detection of microRNA in cells, providing a new avenue for early clinical diagnoses of disease.In the present work, a novel alkaline phosphatase (ALP) activity colorimetric assay is proposed by integrating the oxidase-mimicking catalytic characteristic of CeVO4 nanoparticles with the hexametaphosphate ion (HMPi) mediated electrostatic aggregation. The CeVO4 nanoparticles exhibit good oxidase-mimetic catalytic ability to promote the 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to TMBox, offering a significant change from colorless to blue. After a small amount of HMPi is added, the strong electrostatic interaction between the negatively charged HMPi species and the positively charged TMBox product leads to the aggregation of the latter, generating an aubergine HMPi-TMBox agglomerate. After the agglomerate is filtered out, the reaction solution turns to be almost colorless. When ALP is used to hydrolyze the HMPi species in advance, the electrostatic aggregation process is remarkably restrained, thus retaining the blue color of the CeVO4 catalyzed TMB solution. According to the new sensing strategy, highly selective and sensitive analysis of ALP activity was realized, providing a wide detection range from 1 to 210 U/L and a detection limit of 0.68 U/L. Accurate measurement of ALP activity in clinical serum matrices was also validated, demonstrating the practicability of the proposed assay in practical applications.The quest for highly sensitive and specific detection of disease biomarkers is high, despite many advances in analysis system. Here, we present a sensitive immunoassay platform using DNA-tethered gold nanoparticles and DNA-binding zinc fingers (ZFs). selleck products Monomeric alkaline phosphatase (mAP) and human TNF-α were employed as a signal generator and a disease biomarker, respectively. Gold nanoparticles (AuNPs) were first grafted with double-stranded DNAs having specific sequences for two different types of ZFs (QNK and zif268). The alkaline phosphatase and TNF-α-specific protein binder were genetically fused to each of two different types of ZFs, respectively, followed by conjugation with the DNA-tethered AuNPs in a sequence-specific manner. The use of the functionalized AuNPs as a signal generator in a colorimetric immunoassay of TNF-α led to LOD of 120 pg/ml, showing about 161-fold higher sensitivity than a protein binder-fused mAP. The present immunoassay platform could be applied to other analytes by simply replacing a targeting moiety, allowing a versatile and reproducible colorimetric immunoassay.In recent years, biomarkers have played more extensive roles as indicators of disease progression, safety, and drug efficacy. Targeted quantitative analysis of biomarkers including drug targets have become increasingly important to drive critical decision-making in various drug development stages, as well as to improve the success rates of clinical trials. There are many analytical challenges when developing and validating the bioanalytical methods associated with the measurement of an endogenous protein biomarker, especially when using LC-MS based analysis. Moreover, the current regulatory guidelines for assay development and validation using LC-MS platform mainly focuse on regulated bioanalysis for therapeutic drugs. In this manuscript, we use total soluble CD73 (sCD73) as an example to present a "fit-for-purpose" assay using a hybrid immunocapture-LC-MS/MS assay platform. A non-competing antibody (to the therapeutic drug) was used to isolate and enrich the total sCD73 from biological matrix. The enriched sample was digested after immunocapture and a surrogate peptide was monitored for quantification. The assay showed good accuracy, precision, specificity and sensitivity with the LLOQ of 1.00 ng/mL, and was applied in a clinical study to measure the total sCD73 as a potential pharmacodynamic (PD) marker. Some recommendations and considerations for "fit-for-purpose" validation of this assay, and hybrid LC-MS assays in general, for the quantitative analysis of an endogenous protein biomarkers is also discussed.Cotton is a natural material with good mechanical and chemical properties. It presents a hydrophilic surface that must be modified by the introduction of appropriate groups, if semi-polar or non-polar analytes are intended to be isolated from an aqueous matrix. In this article, cotton is modified with β-cyclodextrins, which presents a hydrophobic cavity where target molecules can be hosted. The cavity size restricts the access of larger or less accessible molecules due to their conformation, thus improving the extraction selectivity. The modified cotton fibers are packed in a disposable syringe device where all the steps of the extraction take place. The ensuing fibers were evaluated for the extraction of several drugs providing the best results for cocaine (CO) and methamphetamine (MTA). These targets were extracted from saliva samples and finally determined by direct infusion mass spectrometry. The method provides limits of detection and quantification of 0.6 and 2 μg L-1 for CO and 0.8 and 2.7 μg L-1 for MTA, with precision values at the quantification level better than the 9% (expressed as relative standard deviation).