Danielsenhartvigsen4540
To investigate whether Sp1 can ameliorate sepsis-induced myocardial injury and explore the potential molecular mechanism.
The embryonic cardiomyocyte cell line H9C2 and primary cultured mouse neonatal cardiomyocytes (CMNCs) were treated with LPS or phosphate-buffered saline (PBS). A mouse model of LPS-induced sepsis was established using male C57BL/6J mice and their cardiomyocytes were collected. Real-time reverse transcription-PCR (qRT-PCR) assay was used to detect the expression levels of Sp1 and ZFAS1 in cardiomyocytes. Western blotting analysis was used to assess the protein expression levels of Sp1, apoptosis-associated proteins and Notch signaling pathway related proteins. Luciferase assay was used to detect the interaction between Sp1 and ZFAS1. Cell transfection was used to generate H9C2 cells with overexpressed or knocked down of Sp1 or ZFAS1. MTT assay and flow cytometry analysis were used to test the cell proliferation and cell apoptosis ratio.
Our data revealed that the expressions of ZFAS1 and Sp1 were significantly reduced in LPS-treated H9C2 cells and primary CMNCs. The downregulation of ZFAS1 and Sp1 were also found in cardiomyocytes obtained from LPS-challenged mice. LPS induced H9C2 cell apoptosis and depressed cell proliferation was ameliorated by ZFAS1 overexpression and aggravated by ZFAS1 knockdown. Mechanistically, Luciferase assay indicated that Sp1 could bind to ZFAS1, and positively regulated ZFAS1 expression. Moreover, Notch signaling pathway participates in H9C2 cell apoptosis mediated by Sp1.
The present study demonstrates that Sp1 regulates LPS-induced cardiomyocyte apoptosis via ZFAS1/Notch signaling pathway, which may serve as therapeutic targets for sepsis-induced myocardial injury.
The present study demonstrates that Sp1 regulates LPS-induced cardiomyocyte apoptosis via ZFAS1/Notch signaling pathway, which may serve as therapeutic targets for sepsis-induced myocardial injury.
Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. miR-410-3p is involved in oncogenesis and development of CRC, but the specific regulation mechanism is still not known clearly.
The expression of miR-410-3p and zinc finger CCHC-type containing 10 (ZCCHC10) in CRC cells was detected by qRT-PCR and western blot method, respectively. The dual-luciferase reporter gene detection was applied for determination of interaction between miR-410-3p and ZCCHC10. The wound healing assay and transwell assay were carried out to measure cell migration and invasive ability, respectively.
The miR-410-3p expression levels were markedly increased, but ZCCHC10 levels were reduced in CRC cells and tissues. Dual-luciferase reporter gene detection indicated that miR-410-3p targeted ZCCHC10 directly. Functionally knockdown of ZCCHC10 or overexpression of miR-410-3p activated nuclear factor-κB (NF-κB) signaling pathway, promoted epithelial-mesenchymal transition (EMT) process, as well as cell migration and invasion of CRC cells. After adding NF-κB inhibitor BAY 11-708 to inhibit NF-κB pathway, the promoting effects of si-ZCCHC10 on cell migration, invasion and EMT of HT29 and SW480 cells were suppressed. Meanwhile, overexpression of ZCCHC10 inhibited the effects of miR-410-3p on cell migration, invasion and EMT of HT29 and SW480.
miR-410-3p-mediated ZCCHC10 suppression regulates NF-κB activation, thereby promoting EMT process, cell migration and invasion of CRC cells. This study provides a new insight into the specific mechanism by which miR-410-3p mediates CRC progression.
miR-410-3p-mediated ZCCHC10 suppression regulates NF-κB activation, thereby promoting EMT process, cell migration and invasion of CRC cells. This study provides a new insight into the specific mechanism by which miR-410-3p mediates CRC progression.Tumor necrosis factor-α (TNF-α) is a major mediator of inflammation and its increased levels have been analyzed in vitiligo patients. Vitiligo is a depigmentary skin disarray caused due to disapperance of functional melanocytes. The aim of the study was to investigate the role of TNF-α in melanocyte biology, analyzing candidate molecules of melanocytes and immune homeostasis. Our results showed increased TNF-α transcripts in vitiligenous lesional and non-lesional skin. Melanocytes upon exogenous stimulation with TNF-α exhibited a significant reduction in cell viability with elevated cellular and mitochondrial ROS and compromised complex I activity. Moreover, we observed a reduction in melanin content via shedding of dendrites, down-regulation of MITF-M, TYR and up-regulation of TNFR1, IL6, ICAM1 expression, whereas TNFR2 levels remain unaltered. TNF-α exposure stimulated cell apoptosis at 48 h and autophagy at 12 h, elevating ATG12 and BECN1 transcripts. Our novel findings establish the functional link between autophagy and melanocyte destruction. Overall, our study suggests a key function of TNF-α in melanocyte homeostasis and autoimmune vitiligo pathogenesis.In nature, microorganisms live in multi-species communities allowing microbial interactions. These interactions are lost upon establishing a pure culture, increasing the metabolic burden and limiting the metabolic potential of the isolated microbe. Sirtuin activator In the past years, synthetic microbial co-cultivation, using well-defined consortia of two or more microbes, was increasingly explored for innovative applications in biotechnology. As such, interspecies interactions take place without the complexity of an open mixed culture, minimizing undesired side reactions. Ultimately, synthetic co-cultivation allows to take well-characterized microbes 'off-the-shelf' to create ecosystems with improved process capabilities. This review highlights some of the recent developments on co-cultivation, focusing on waste-to-chemicals conversions. It also addresses fundamental knowledge on microbial interactions deriving from these studies, which is important to further develop our ability to engineer functional co-cultures for bioproduction.Circular RNAs (circRNAs), a new class of widely expressed endogenous regulatory RNAs, are characterized by a covalently closed loop structure without a 5' cap or 3' tail. Increasing numbers of studies have shown that circRNAs play important roles in diverse physiological and pathological processes, including the dynamic interactions between viruses and hosts. However, their multifaceted roles in cellular responses to influenza A virus (IAV) infection remain largely unknown. Here, we analyzed the expression of circ_0050463, which is predominantly localized in cytoplasm, in response to IAV infection. Knockdown of circ_0050463 with siRNA in A549 cells inhibited IAV replication. In addition, the activation of nuclear factor κB (NF-κB) was involved in IAV-induced circ_0050463 expression, as revealed by assay using a NF-Kb inhibitor (Bay 11-7082). By performing biotin-labeled RNA pull-down and luciferase reporter assay, we demonstrated that circ_0050463 functioned as an endogenous microRNA-33b-5p sponge to sequester and inhibit miR-33b-5p activity, resulting in increased eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) expression with subsequent facilitation of IAV replication.