Corbettmeadows1868
Providing information in times of Covid-19 is challenging, but remains necessary for good clinical care.Caveolin-1 (CAV-1) can extensively regulate lipid transportation, cell growth and cell death. click here In the present study, we revealed a novel function of CAV-1 in inhibiting glycosylation of other molecules in murine breast cancer cell line. After the silencing of CAV-1, we found that the mRNA and protein expressions of cluster of differentiation 147 (CD147) and its related molecules (MCT4, matrix metalloproteinase MMP2 and MMP9) increased in the breast cancer cells. Meanwhile, the migration and invasion of the breast cancer cells were significantly enhanced assessed by cell wound healing experiment and transwell assays. Further, the gelatin zymography and lactate assay in the cells also showed the strengthened enzyme activity of MMP9 and the increased extracellular lactate concentration, respectively, after the silencing of CAV-1. Notably, the glycosylation level of CD147 overtly increased after the inhibition of CAV-1 detected by Western Blot analysis, whereas upregulation of CAV-1 did the opposite. Therefore, the findings suggest that the downregulation of CAV-1 can promote breast cancer cell progression probably by highly glycosylated CD147.Increased integrin β5 (ITGB5) expression is associated with the progression and metastasis of several types of cancers. However, whether upregulated ITGB5 expression can act as a prognostic factor for colorectal cancer (CRC) remains controversial. In this study, we aimed to identify the role ITGB5 plays during the pathogenesis of human CRC and explore the underlying molecular mechanism. Here, we show that ITGB5 expression is upregulated in CRC and is significantly associated with exacerbated CRC malignancy and an unfavourable overall survival rate among CRC patients. ITGB5 silencing significantly inhibited the proliferation and invasion of human CRC cell lines (HCT116 and HT29) in vitro and suppressed the growth and metastasis of implanted CRC tumours in vivo. Mechanistically, upregulated ITGB5 expression enhanced transforming growth factor β /Smad signalling and facilitated the epithelial-mesenchymal transition in CRC cells. Together, such findings indicate that ITGB5 acts as an oncogenic factor to enhance the malignancy of CRC and suggest that ITGB5 may be a therapeutic target.
MiRNA is an important regulator of tumorigenesis and tumor progression. MiR-337 expression was increased in pancreatic cancer tissues and it was associated with patients' survival. This study aimed to explore the influence and the potential working mechanism of miR-337 on the malignant behaviors of pancreatic cancer cells.
MiR-337 expression was detected by qRT-PCR. The expression levels of STAT3, epithelial-mesenchymal transition-related genes and Wnt/β-Catenin pathway genes were evaluated by qRT-PCR and western blot. Cell counting kit -8 and colony formation assays were conducted to examine the proliferation of AsPC-1 and SW1990 cells. Wound healing and transwell assays were performed to determine the migration and invasion of AsPC-1 and SW1990 cells. The predicted target gene of miR-337 was verified by luciferase reporter assay.
The expression of miR-337 was decreased and STAT3 expression was increased in pancreatic cancer tissues as well as tumor cells. Overexpression of miR-337 suppressed prolifera for pancreatic cancer treatment.
Translocation of full-length Her2 receptor into nucleus was reported by some studies. Here, we tested whether nuclear Her2 contributes to paclitaxel resistance in Her2-overexpressing breast cancer cells.
Breast cancer cell was transfected with plasmids containing cDNA of wild-type Her2 or mutant-type Her2 lacking the nuclear localization signal (NLS) sequence which is required for Her2 nuclear transport. Cell resistance to paclitaxel was analyzed. Paclitaxel-resistant breast cancer cell was also developed and nuclear Her2 expression was tested. Then, correlation between nuclear Her2 and resistance to paclitaxel were analyzed. Expression of importin β1 was decreased to downregulate nuclear Her2 level and cell resistance to paclitaxel was tested.
We found that Her2 overexpression increases Her2 nuclear expression and cells resistance to paclitaxel in MCF-7 cells. In the paclitaxel resistant cell (SK-BR-3/R), nuclear Her2 expression is upregulated compared with parental SK-BR-3 cells. Increased expression of nuclear Her2 after short-time (48 h) treatment of paclitaxel was also observed in SK-BR-3 cells. Further downregulation of Her2 nuclear expression through blocking expression of importin β1 sensitizes the cells to paclitaxel. The analysis showed that the Her2 nuclear expression increases the survivin expression which leads to resistance to paclitaxel. Her2 nuclear expression decreases paclitaxel-induced apoptosis. However, co-immunoprecipitation was applied, and the physical interaction of nuclear Her2 and survivin was not detected.
We show for the first time that nuclear Her2 contributes to paclitaxel resistance in breast cancer cells which suggests that nuclear Her2 as a potential target to sensitize breast cancers to paclitaxel treatment.
We show for the first time that nuclear Her2 contributes to paclitaxel resistance in breast cancer cells which suggests that nuclear Her2 as a potential target to sensitize breast cancers to paclitaxel treatment.Triple-negative breast cancer (TNBC) is highly aggressive, with high rates of early relapse and very poor overall prognosis. Amphiregulin (AREG) is the most abundant epidermal growth factor receptor (EGFR) agonist in MDA-MB-231 TNBC cells, whose proliferation can be inhibited by (-)-epigallocatechin gallate (EGCG), a constituent of green tea that is prone to oxidative polymerization. The effect of dimeric-EGCG, a dimer of oxidized and polymerized EGCG, on MDA-MB-231 cell the proliferation warrants further exploration. In the present study, MTT, flow cytometry, migration scratch, transwell, western blotting, and surface plasmon resonance assays were used to evaluate the effect of dimeric-EGCG on MDA-MB-231 cells and explore the underlying mechanism. MDA-MB-231 cell proliferation and migration were significantly inhibited by dimeric-EGCG at concentrations as low as 10 μM. Levels of EGFR and p44/42 MAPK phosphorylation in MDA-MB-231 cells were significantly reduced by treatment with 10 μM dimeric-EGCG (P less then 0.