Yatesduke0510

Z Iurium Wiki

Verze z 16. 11. 2024, 21:31, kterou vytvořil Yatesduke0510 (diskuse | příspěvky) (Založena nová stránka s textem „Arctigenin can be used as a lead compound for the development of lung adenocarcinoma therapy drugs. Over the last two decades, developments in nanomedicine…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Arctigenin can be used as a lead compound for the development of lung adenocarcinoma therapy drugs. Over the last two decades, developments in nanomedicine have resulted in technical advances with application to clinical science. Both organic and inorganic nanoparticles (NPs) have shown tolerability, pharmacologic specificity and biodegradability. A subclass of NPs, protein NPs, have garnered recent attention due to the inherent biocompatibility of protein substrates. Protein NPs are currently being employed widely in pharmaceuticals development with applications in nasal, pulmonary, intravenous, ocular and oral delivery. Despite the distinct advantages of orally administered pharmaceuticals, the development of oral delivery systems has been comparatively limited. Therefore, this review attempts to discuss the most recent experimental and pre-clinical findings in the development of protein NPs for oral delivery, while envisioning upcoming challenges. As the outermost layer of the eye, the cornea is vulnerable to physical and chemical trauma, which can result in loss of transparency and lead to corneal blindness. Given the global corneal donor shortage, there is an unmet need for biocompatible corneal substitutes that have high transparency, mechanical integrity and regenerative potentials. Herein we engineered a dual-layered collagen vitrigel containing biomimetic synthetic Bowman's membrane (sBM) and stromal layer (sSL). The sBM supported rapid epithelial cell migration, maturation and multilayer formation, and the sSL containing tissue-derived extracellular matrix (ECM) microparticles presented a biomimetic lamellar ultrastructure mimicking the native corneal stroma. The incorporation of tissue-derived microparticles in sSL layer significantly enhanced the mechanical properties and suturability of the implant without compromising the transparency after vitrification. In vivo performance of the vitrigel in a rabbit anterior lamellar keratoplasty model showed full re-epithelialization within 14 days and integration of the vitrigel with the host tissue stroma by day 30. The migrated epithelial cells formed functional multilayer with limbal stem cell marker p63 K14 expressed in the lower layer, epithelial marker K3 and K12 expressed through the layers and tight junction protein ZO-1 expressed by the multilayers. Corneal fibroblasts migrated into the implants to facilitate host/implant integration and corneal stromal regeneration. In summary, these results suggest that the multi-functional layers of this novel collagen vitrigel exhibited significantly improved biological performance as corneal substitute by harnessing a fast re-epithelialization and stromal regeneration potential. Salmonella enterica subsp. enterica serovar Typhi, a human enteric pathogen causing typhoid fever, developed resistance to multiple antibiotics over the years. The current study was dedicated to understand the multi-drug resistance (MDR) mechanism of S. enterica serovar Typhi CT18 and to identify potential drug targets that could be exploited for new drug discovery. We have employed gene interaction network analysis for 44 genes which had 275 interactions. Clustering analysis resulted in three highly interconnecting clusters (C1-C3). Functional enrichment analysis revealed the presence of drug target alteration and three different multi-drug efflux pumps in the bacteria that were associated with antibiotic resistance. We found seven genes (arnA,B,C,D,E,F,T) conferring resistance to Cationic Anti-Microbial Polypeptide (CAMP) molecules by membrane Lipopolysaccharide (LPS) modification, while macB was observed to be an essential controlling hub of the network and played a crucial role in MacAB-TolC efflux pump. Further, we identified five genes (mdtH, mdtM, mdtG, emrD and mdfA) which were involved in Major Facilitator Superfamily (MFS) efflux system and acrAB contributed towards AcrAB-TolC efflux pump. All three efflux pumps were seen to be highly dependent on tolC gene. learn more The five genes, namely tolC, macB, acrA, acrB and mdfA which were involved in multiple resistance pathways, can act as potential drug targets for successful treatment strategies. Therefore, this study has provided profound insights into the MDR mechanism in S. Typhi CT18. Our results will be useful for experimental biologists to explore new leads for S. enterica. Toxoplasmosis is an intracellular parasitic disease caused by the protozoa Toxoplasma gondii, which affects about half of the world's population. In spite of the strenuous endeavors, a T. gondii vaccine for clinical use remains unreported to date. In the present study, we generated virus-like particles (VLPs) containing T. gondii apical membrane antigen 1 (AMA1) and assessed its efficacy in a murine model. VLPs were characterized using western blot and TEM. T. gondii-specific IgG and IgA antibody responses in sera, germinal center B cell responses in spleen, brain cyst counts and their sizes were determined. Elevated T. gondii-specific IgG and IgA antibody responses were observed from the sera of AMA1 VLP-immunized mice. Immunization with AMA1 VLPs enhanced T. gondii-specific antibody-secreting cell responses and germinal center B cell responses upon antigen stimulation. Brain tissue analysis revealed that AMA1 VLP-immunization reduced cyst formation and its size compared to control. Also, VLP-immunized mice were less susceptible to body weight loss and displayed enhanced survival rate compared to the control group. Our results demonstrated that the immune response induced by T. gondii AMA1 VLPs confer partial protection against T. gondii infection and provides important insight into potential T. gondii vaccine design strategy. Mycotoxins are secondary metabolites produced mainly by fungi belonging to the genera Aspergillus, Fusarium, Penicillium, Claviceps, and Alternaria that contaminate basic food products throughout the world, whether developing countries becoming predominantly affected. Currently, more than 500 mycotoxins are reported in which the most important concern to public health and agriculture include AFB1, OTA, TCTs (especially DON, T-2, HT-2), FB1, ZEN, PAT, CT, and EAs. The presence of mycotoxin in significant quantities poses health risks varying from allergic reactions to death on both humans and animals. This review brings attention to the present status of mycotoxin contamination of food products and recommended control strategies for mycotoxin mitigation. Humans are exposed to mycotoxins directly through the consumption of contaminated foods while, indirectly through carryover of toxins and their metabolites into animal tissues, milk, meat and eggs after ingestion of contaminated feeds. Pre-harvest (field) control of mycotoxin production and post-harvest (storage) mitigation of contamination represent the most effective approach to limit mycotoxins in food and feed.

Autoři článku: Yatesduke0510 (Epstein Offersen)