Albertsenevans6810
Low-temperature atmospheric-pressure plasma has been studied for disinfection purposes. When plasma is exposed to water, reactive oxygen and nitrogen species are generated and preserved in the water fraction (plasma-treated water [PTW]), which consequently exhibits bactericidal activity. At low temperatures, one of the bactericidal components of PTW is peroxynitric acid (PNA). Importantly, PNA can also be synthesized by chemical reaction, without exposure to plasma. In this study, we evaluated the bactericidal properties of PNA based on reaction kinetics in comparison with other disinfectants. The analysis, based on dose-dependent effects, showed that PNA exhibited about 1 and 10 times the bactericidal activity of hypochlorous acid (HOCl) and peracetic acid, respectively. In addition, we evaluated the influence of organic contaminants on the bactericidal effects of PNA and HOCl. The bactericidal potential of both disinfectants was reduced by bovine serum albumin (BSA); however, PNA showed about 30-times-highe molarity than that of sodium hypochlorite and peracetic acid, which are used as general disinfectants for medical equipment. Moreover, the high resistance of PNA to organic load was confirmed, indicating that PNA will inactivate bacteria effectively even on contaminated surfaces, such as used medical devices or the human body surface. Therefore, we propose that PNA can be used as a strong disinfectant for the human body.Gluconobacter oxydans has the unique property of a glucose oxidation system in the periplasmic space, where glucose is oxidized incompletely to ketogluconic acids in a nicotinamide cofactor-independent manner. Elimination of the gdhM gene for membrane-bound glucose dehydrogenase, the first enzyme for the periplasmic glucose oxidation system, induces a metabolic change whereby glucose is oxidized in the cytoplasm to acetic acid. G. oxydans strain NBRC3293 possesses two molecular species of type II NADH dehydrogenase (NDH), the primary and auxiliary NDHs that oxidize NAD(P)H by reducing ubiquinone in the cell membrane. The substrate specificities of the two NDHs are different from each other primary NDH (p-NDH) oxidizes NADH specifically but auxiliary NDH (a-NDH) oxidizes both NADH and NADPH. We constructed G. oxydans NBRC3293 derivatives defective in the ndhA gene for a-NDH, in the gdhM gene, and in both. Our ΔgdhM derivative yielded higher cell biomass on glucose, as reported previously, but grew at a lower rhe cytoplasm by reducing nicotinamide cofactors. Reduced forms of nicotinamide cofactors are reoxidized by NADH dehydrogenase (NDH) on the cell membrane. We found that two kinds of NDH in G. oxydans have different substrate specificities the primary enzyme is NADH specific, and the auxiliary one oxidizes both NADH and NADPH. Inactivation of the latter enzyme in G. oxydans cells in which we had induced cytoplasmic glucose oxidation resulted in elevated intracellular levels of NAD(P)H, limiting cell growth on glucose. We suggest that the auxiliary enzyme is important if G. Inflammation agonist oxydans grows independently of the periplasmic oxidation system.Helicoverpa armigera is a major insect pest of several crops worldwide. This insect is susceptible to some Bacillus thuringiensis (Bt) Cry insecticidal proteins expressed in transgenic crops or used in biopesticides. Previously, we identified H. armigera prohibitin (HaPHB) as a Cry1Ac-binding protein. Here, we further analyzed the potential role of PHB as a Cry toxin receptor in comparison to cadherin (CAD), well recognized as a Cry1Ac receptor. HaPHB-2 midgut protein and HaCAD toxin-binding region (TBR) fragment from H. armigera were expressed in Escherichia coli cells, and binding assays with different Cry1 toxins were performed. We demonstrated that Cry1Ab, Cry1Ac, and Cry1Fa toxins bound to HaPHB-2 in a manner similar to that seen with HaCAD-TBR. Different Cry1Ab mutant toxins located in domain II (Cry1AbF371A and Cry1AbG439D) or domain III (Cry1AbL511A and Cry1AbN514A), which were previously characterized and found to be affected in receptor binding, were analyzed regarding their binding interaction withb as a binding region involved in the interaction with HaPHB-2 and in toxicity. This report characterized HaPHB-Cry1 binding interaction, providing novel insights into potential target sites for improving Cry1 toxicity against H. armigera.Despite the wide-ranging proscription of hexavalent chromium, chromium(VI) remains among the major polluting heavy metals worldwide. Aerobic methane-oxidizing bacteria are widespread environmental microorganisms that can perform diverse reactions using methane as the feedstock. The methanotroph Methylococcus capsulatus Bath, like many other microorganisms, detoxifies chromium(VI) by reduction to chromium(III). Here, the interaction of chromium species with M. capsulatus Bath was examined in detail by using a range of techniques. Cell fractionation and high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) indicated that externally provided chromium(VI) underwent reduction and was then taken up into the cytoplasmic and membranous fractions of the cells. This was confirmed by X-ray photoelectron spectroscopy (XPS) of intact cultures that indicated negligible chromium on the surfaces of or outside the cells. Distribution of chromium and other elements within intact and able chemicals and biological products using methane gas. Interest in such technology has increased recently owing to increasing availability of low-cost methane from fossil and biological sources. Here, it is demonstrated that this versatile methanotroph can reduce the toxic contaminating heavy metal chromium(VI) to the less toxic form chromium(III) while accumulating the chromium(III) within the cells. This is expected to diminish the bioavailability of the chromium and make it less likely to be reoxidized to chromium(VI). Thus, M. capsulatus has the capacity to perform methane-driven remediation of chromium-contaminated water and other materials and to accumulate the chromium in the low-toxicity chromium(III) form within the cells.