Covingtonlynggaard3834
The roles of different plasma membrane aquaporins (PIPs) in leaf-level gas exchange of Arabidopsis thaliana were examined using knockout mutants. Since multiple Arabidopsis PIPs are implicated in CO2 transport across cell membranes, we focused on identifying the effects of the knockout mutations on photosynthesis, and whether they are mediated through the control of stomatal conductance of water vapour (gs), mesophyll conductance of CO2 (gm), or both. We grew Arabidopsis plants in low and high humidity environments and found that the contribution of PIPs to gs was larger under low air humidity when the evaporative demand was high, whereas any effect of a lack of PIP function was minimal under higher humidity. The pip2;4 knockout mutant had 44% higher gs than wild-type plants under low humidity, which in turn resulted in an increased net photosynthetic rate (Anet). We also observed a 23% increase in whole-plant transpiration (E) for this knockout mutant. The lack of functional plasma membrane aquaporin AtPIP2;5 did not affect gs or E, but resulted in homeostasis of gm despite changes in humidity, indicating a possible role in regulating CO2 membrane permeability. Eeyarestatin 1 research buy CO2 transport measurements in yeast expressing AtPIP2;5 confirmed that this aquaporin is indeed permeable to CO2.Tumor microenvironment (TME) plays a particularly important role in the progression, invasion and metastasis of cervical carcinoma (CC). Tumor-associated macrophages (TAMs) are significant components of the tumor microenvironment in CC. However, the results of studies on the correlation between TAMs and progression in CC are still controversial. This research aimed to investigate the relationship between TAMs infiltration and progression in CC. A total of 100 patients with CC were included in the study. The correlation between TAMs and clinicopathologic features was studied. Besides, a systematic literature search was conducted from legitimate electronic databases to specifically evaluate the role of TAMs in TME of cervical carcinoma. In the meta-analysis, high stromal CD68+ TAMs density was relevant to lymph node metastasis (WMD = 11.89, 95% CI 5.30-18.47). At the same time, CD163+ M2 TAM density was associated with lymph node metastasis (OR = 2.42, 95% CI 1.09-5.37; WMD = 39.37, 95% CI 28.25-50.49) and FIGO stage (WMD = -33.60, 95% CI -45.04 to -22.16). This was further confirmed in the experimental study of 100 tissues of cervical cancer. It supported a critical role of TAMs as a prospective predictor of cervical cancer. In conclusion, CD68+ TAM and CD163+ M2 TAM infiltration in CC were associated with tumor progression. And CD163+ M2 TAM infiltration was associated with more advanced FIGO stage and lymph node metastasis in CC.Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.Forskolin, a class of labdane-type diterpenoid, has significant medicinal value in anticancer, antiasthmatic, antihypertensive, and heart-strengthening treatments. The main source of natural forskolin is its extraction from the cork tissue of the root of Coleus forskohlii. However, conventional modes of extraction pose several challenges. In recent years, the construction of microbial cell factories to produce medicinal natural products via synthetic biological methods has effectively solved the current problems and is a research hotspot in this field. This review summarizes the recent progress in the heterologous synthesis of forskolin via synthetic biological technology, analyzes the current challenges, and proposes corresponding strategies.Tumor suppressor in lung cancer-1 (TSLC1) was first identified as a tumor suppressor for lung cancer, and frequently downregulated in various types of cancers including hepatocellular carcinoma (HCC). The Wnt pathway plays a critical role in tumorigenesis, migration, and invasion in HCC. However, the function of TSLC1 in modulating Wnt signaling in HCC is unclear. In this study, we evaluated the effect of TSLC1-armed oncolytic adenovirus (S24-TSLC1) on the Wnt/β-catenin pathway, cell viability, invasion and migration abilities of HCC in vitro and the growth of SMMC-7721-xenografted tumor in mice model. We detected the expression of TSLC1 in tumor samples and HCC cell lines. The results showed that TSLC1 expression was low in HCC, but high in pericarcinomatous tissue and normal cells, which implied that TSLC1 is a tumor suppressor of liver cancer. S24-TSLC1 exhibited an antitumor effect on HCC cell growth in vitro, but did little damage to normal liver cells. Overexpression of TSLC1 downregulated the transcriptional activity of TCF4/β-catenin and inhibited the mRNA or protein expression of Wnt target genes cyclinD1 and c-myc. S24-TSLC1 also inhibited the invasion and migration of HCC cells. Animal experiments further confirmed that S24-TSLC1 significantly inhibited tumor growth of the SMMC-7721-xenografted tumor. In conclusion, TSLC1 could downregulate the Wnt signal pathway and suppress HCC cell growth, migration and invasion, suggesting that S24-TSLC1 may be a potent antitumor agent for future clinical trials in liver cancer treatment.