Vittruppotter5793
β-Alanine (β-Ala) is an important intermediate with numerous applications in food and feed additives, pharmaceuticals, polymeric materials, and electroplating industries. Its biological production routes that employ L-aspartate-α-decarboxylase (ADC) as the key enzyme are attractive. In this study, we developed an efficient and environmentally safe method for β-Ala production by co-expressing two different subtypes of ADC. A bacterial ADC from Bacillus subtilis (BSADC) and an insect ADC from Tribolium castaneum (TCADC) use pyruvoyl and pyridoxal-5'-phosphate (PLP) as cofactor, respectively. 3050 mM (271.5 g/L) β-Ala was achieved from L-aspartic acid by using the whole-cell biocatalyst co-expressing BSADC and TCADC, corresponding to a conversion rate of 92.4%. Meanwhile, one-pot synthesis of β-Ala from fumaric acid through using a tri-enzyme cascade route with two different subtypes of ADC and L-aspartase (AspA) from Escherichia coli was established. 2250 mM (200.3 g/L) β-Ala was obtained from fumaric acid with a conversion rate of 90.0%. This work proposes a novel strategy that improves β-Ala production in the decarboxylation pathway of L-aspartic acid.The most common disorders of the musculoskeletal system are low back disorders. They cause significant direct and indirect costs to different societies especially in lifting occupations. selleck inhibitor To reduce the risk of low back disorders, mechanical lifting aids have been used to decrease low back muscle forces. But there are very few direct ways to calculate muscle forces and examine the effect of personal lift-assist devices, so biomechanical models ought to be used to examine the quality of these devices for assisting back muscles in lifting tasks. The purpose of this study is to examine the effect of a designed wearable lift-assist vest (WLAV) in the reduction of erector spinae muscle forces during symmetric squat lifting tasks. Two techniques of muscle calculation were used, the electromyography-based method and the optimization-based model. The first uses electromyography data of erector spinae muscles and its linear relationship with muscle force to estimate their forces, and the second uses a developed musculoskeletal model to calculate back muscle forces using an optimization-based method. The results show that these techniques reduce the average value of erector spinae muscle forces by 45.38 (± 4.80) % and 42.03 (± 8.24) % respectively. Also, both methods indicated approximately the same behaviour in changing muscle forces during 10 to 60 degrees of trunk flexion using WLAV. The use of WLAV can help to reduce the activity of low back muscles in lifting tasks by transferring the external load effect to the assistive spring system utilized in it, so this device may help people lift for longer.Phonocardiogram signals (PCG) and electrocardiogram signals (PCG) have been used separately for decades to diagnose heart abnormalities. Combining these two synchronous signals is expected to enhance the diagnosis for better medical management of patients. This paper's objective is to highlight the performance comparison between the diagnosis of heart abnormalities based only on PCG recordings and that based on synchronized PCG and ECG recordings. For evaluating the classification results, we have used the ROC curve and four performance measures Accuracy, Area Under Curve (AUC), sensitivity, and specificity.To investigate the effects of scatter from a megavoltage treatment beam on intrafraction cone beam CT (CBCT) image quality. The effects of treatment beam field size and phantom geometry were investigated as well as the clinical success of IFI. Intrafraction imaging (IFI) was performed on four phantoms with four different MV field sizes using a 6 MV FFF source. The image quality of the intrafraction CBCT images was compared to that of a baseline CBCT (i.e. with no treatment beam on) and quantified using noise and low contrast visibility. Increasing the kV tube current was explored as a possible method to reduce noise induced by the MV photon scatter in the intrafraction-CBCTs. The clinical success of all IFI patients over a 2 month period was reviewed. Intrafraction-CBCT image quality and low-contrast visibility deteriorated as MV field size increased. The extent of image degradation was found to depend on the mass of the phantom resulting in a more pronounced effect for a pelvic phantom than a thoracic phantom. While increasing the tube current could reduce the noise in the intrafraction-CBCT images, increasing the current by a factor of 4 failed to reach baseline image quality. Anatomy was found to be the primary indication of clinical IFI failure with all observed failures occurring during abdominal treatments. Image quality was found to decrease with increasing MV field size and decrease with increasing treatment anatomy mass. When considering intrafraction imaging clinically, the primary indicator of IFI failure is treatment anatomy. IFI can be used during chest treatments with high success rates but care must be taken for abdominal treatments and failures should be expected.3D printing is a promising solution for the production of bespoke phantoms and phantom components, for radiotherapy dosimetry and quality assurance (QA) purposes. This proof-of-concept study investigated the use of a dual-head printer to deposit two different filaments (polylactic acid (PLA) and StoneFil PLA-concrete (Formfutura BV, Nijmegen, Netherlands)) at several different in-fill densities, to achieve quasi-simultaneous 3D printing of muscle-, lung- and bone-equivalent media. A Raise 3D Pro 3D printer (Raise 3D Technologies Inc, Irvine, USA) was used to print one thoracic and one cranial phantom slab. Analysis using in-house 3D print QA software showed that the two humanoid phantom slabs geometrically matched the stereolithography (STL) files on which they were based, within 0.3 mm, except in one area of the thoracic slab that was affected by thermal warping by up to 3.4 mm. The 3D printed muscle, lung and bone materials in the two humanoid phantom slabs were approximately radiologically-equivalent to human muscle, lung and bone.