Larsengrantham4501
UV/H2O2 treatment promoted the MP fragmentation and chemical leaching more significantly than UV treatment, resulting in a higher toxicity for UV/H2O2-treated water. Our findings pave the way for deeper understanding of how MPs behave and transform in a sequential drinking water treatment process.The global presence of microplastics in the environment is well documented nowadays. Studies already showed the potential risks that microplastic particles might cause to the ecosystem, while potential human health effects are currently under investigation. As one of the main inputs of these crucial researches, the concentration of microplastics in the environment should be measured precisely, confidently and monitored regularly to determine exposure levels of these pollutants. Some study highlights, that the results are usually inconsistent and uncertain, due to different sampling and sample preparation methods and the lack of quality assurance and quality control of these processes. The need for a standardized methodology is an emerging issue, as this would provide the right tools to establish a global monitoring system of microplastics. Validated sample preparation methods of water (especially freshwater) samples for microplastic analysis are rarely described. To fulfil the gap, this study aims to create amethod. This procedure was also able to recover on average 64%±29% of all the environmentally relevant particles during the validation process. Results show that size and density have a great influence on potential particle loss. Recovery of smaller particles are less with both methods than that of the larger particles, but Small Volume Glass Separator yielded significantly higher recovery for more dense particles. The results of this study help to better understand particle loss during sample preparation and thus contribute to the establishment of standardised microplastic analysis processes.Microplastics (MPs) inevitably undergo aging transformation and transport process in environmental compartments. FPS-ZM1 concentration In this study, the polystyrene MPs were aged via three different oxidation methods including persulfate oxidation (PS), UV irradiation (UV), and UV irradiated persulfate oxidation (UVPS). All three treatments induced the great transformation of MPs, with the significant increase in surface roughness and in oxygen-containing functional groups, i.e., COOH or COOC. The UVPS aging showed synergetic effect due to the strengthened photo-initiated chemical oxidation, compared to UV and PS alone. All aged MPs exhibited the enhanced transport (34.9%-89.2%) in sandy and clay loam soils than pristine MPs (30.5%), and the synergetic effect was also observed in the transport behaviors of the UVPS MPs. Higher transport of MPs and aged MPs occurred in sandy soil than that in clay loam soil since the latter one contained high Fe minerals that tend to retain MPs, which was confirmed by the model quartz sand column experiment. Modeling on the migration of MPs retained in soil under a rainstorm scenario showed that the aged MPs had the stronger remobility and greater proportion of cumulative flux than pristine ones in the soil profile. These findings provided new insights on the fate and transport of MPs in natural soil and their potential risk to groundwater contamination.Storage containers are usually used to provide a constant water head in decentralized, community groundwater treatment systems for the removal of iron (Fe) and arsenic (As). However, the commonly practiced aeration prior to storage assists in rapid and complete Fe2+ oxidation, resulting in poor As removal, despite sufficient native-Fe2+ in the source water. In this study, it was found that application of anoxic storage enhanced As removal from groundwater, containing ≥300 µg/L of As(III) and 2.33 mg/L of Fe2+ in an As affected village of Rajshahi district in Bangladesh. Although the oxidation of Fe2+ and As(III) during oxic storage was considerably faster, the As/Fe removal ratio was higher during anoxic storage (61-80±5 µgAs/mgFe) compared to the oxic storage (45±5 µgAs/mgFe). This higher As removal efficacy in anoxic storage containers could not be attributed to the speciation of As, since As(V) concentrations were higher during oxic storage due to more favorable abiotic (As(III) oxidation by O2 and Fenton-like intermediates) and biotic (As(III) oxidizing bacteria, e.g., Sideroxydans, Gallionella, Hydrogenophaga) conditions. The continuous, in-situ hydrous ferric oxide floc formation during flow-through operation, and the favorable lower pH aiding higher sorption capacities for the gradually formed As(V) likely contributed to the improved performance in the anoxic storage containers.The aim of the study was to reveal the effect of neurostimulation with the TKPRPGP neuropeptide on the expression intensity of Doublecortin and Nestin in the olfactory bulb of white Wistar rats using immunohistochemical and computer analysis methods. An isolated assessment of early progenitor differentiation by the density of nestin-positive structures showed that stimulation from birth to 14 days preserves the level of nestin expression, preventing its decrease. When the administration of the neuropeptide is stopped, the expression of nestin decreases sharply, starting from the central zones of the bulb, and after three weeks it is no longer present. The dynamics of doublecortin positive structure density reflects an increase upon neuropeptide administration. Each course of neuropeptide administration caused an increase in the density of the marker, but the degree of effectiveness decreased with age, and the duration of the effect decreased. In conclusion, administration of the neuropeptide TKPRPGP to rats at an early age prolongs the expression of nestin and doublecortin in the olfactory bulbs of rats up to 35 days and up to 74 days of observation, respectively. The administration of the neuropeptide in adulthood does not lead to re-expression of these markers.Continuous photocatalysis via photo-charging and dark-discharging presents a paradigm shift in conventional photocatalysis with the requirement of continuous illumination to maintain the catalytic activity. This is expected to meet the ever-increasing demand for sustainable development of energy and environment driven by natural day-night cycles. Substantial advances in continuous photocatalysis for various environmental applications under light-dark cycles have been witnessed during the last decade. However, there lacks a systematic and critical review on basic but important information of continuous photocatalysis for environmental remediation, challenging robust scientific progress of this technology towards potential practical use. Here, the general description of continuous photocatalysis involving energy storage mechanisms (hole and electron storage) and characterizations (electron storage behaviors, release behaviors and storage capacity) has been first introduced. Importantly, the remediation performance and mechanism of continuous photocatalysis for environmental applications are qualitatively and quantitatively demonstrated, including chemical pollutant oxidation and reduction, microbial pathogen inactivation, and multifunctional treatment.