Dukelarson5069

Z Iurium Wiki

Verze z 16. 11. 2024, 17:27, kterou vytvořil Dukelarson5069 (diskuse | příspěvky) (Založena nová stránka s textem „The use of flowing electrochemical reactors, for example, in redox flow batteries and in various electrosynthesis processes, is increasing. This technology…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The use of flowing electrochemical reactors, for example, in redox flow batteries and in various electrosynthesis processes, is increasing. This technology has the potential to be of central significance in the increased deployment of renewable electricity for carbon-neutral processes. A key element of optimizing efficiency of electrochemical reactors is the combination of high solution conductivity and reagent solubility. Here, we show a substantial rate of charge transfer for an electrochemical reaction occurring in a microemulsion containing electroactive material is loaded inside the nonpolar (toluene) subphase of the microemulsion. The measured rate constant translates to an exchange current density comparable to that in redox flow batteries. The rate could be controlled by the surfactant, which maintains partitioning of reactants and products by forming an interfacial region with ions in the aqueous phase in close proximity. The hypothesized mechanism is evocative of membrane-bound enzymatic reactions. Achieving sufficient rates of electrochemical reaction is the product of an effort designed to establish a reaction condition that meets the requirements of electrochemical reactors using microemulsions to realize a separation of conducting and reactive elements of the solution, opening a door to the broad use of microemulsions to effect controlled electrochemical reactions as steps in more complex processes.We report plasma-enhanced atomic layer deposition (ALD) to prepare conformal nickel thin films and nanotubes using nickelocene as a precursor, water as the oxidant agent, and an in-cycle plasma-enhanced reduction step with hydrogen. The optimized ALD pulse sequence, combined with a post-processing annealing treatment, allowed us to prepare 30 nm-thick metallic Ni layers with a resistivity of 8 μΩ cm at room temperature and good conformality both on the planar substrates and nanotemplates. Thus, we fabricated several micrometers-long nickel nanotubes with diameters ranging from 120 to 330 nm. We report the correlation between ALD growth and functional properties of individual Ni nanotubes characterized in terms of magnetotransport and the confinement of spin-wave modes. The findings offer novel perspectives for Ni-based spintronics and magnonic devices operated in the GHz frequency regime with 3D device architectures.Terahertz (THz) electromagnetic waves strongly interact with complex molecules, making THz spectroscopy a promising tool for high-sensitivity molecular detection, especially for biomedical applications. PU-H71 order Metamaterials are typically used for enhancing THz-molecule interactions to achieve higher sensitivities. However, a primary challenge in THz molecular sensing based on metallic metamaterials is the limited tunability of optical constants of metals. Here, we present an ultrahigh-sensitivity molecular sensor based on carbon nanotube (CNT) THz metamaterials. The sensor, consisting of a CNT cut-wire array on a Si substrate prepared by a novel two-step method, exhibits a reflectance resonance whose frequency strongly varies with the substrate composition, geometries of periodic arrays, and analyte composition. We used this sensor to detect glucose, lactose, and chlorpyrifos-methyl molecules, achieving limit-of-detection values of 30, 40, and 10 ng/mL (S/N = 3), respectively, higher than that of metallic metamaterials by 2 orders of magnitude. We attribute this ultrahigh sensitivity to the high conductivity of CNTs and the efficient adsorption of the target analyte by CNTs through van der Waals forces and π-π stacking. These easy-to-fabricate CNT-based THz metamaterials pave the way for versatile and reliable ultrahigh-sensitivity THz molecular detection.Vertical heterostructures of transition-metal dichalcogenide semiconductors have attracted considerable attention and offer new opportunities in electronics and optoelectronics for the development of innovative and multifunctional devices. Here, we designed a novel and compact vertically stacked two-dimensional (2D) n-WS2/p-GeSe/n-WS2 van der Waals (vdW) heterojunction bipolar transistor (2D-HBT)-based chemical sensor. The performance of the 2D-HBT vdW heterostructure with different base thicknesses is investigated by two configurations, namely, common-emitter and common-base configurations. The 2D-HBT vdW heterostructure exhibited intriguing electrical characteristics of current amplification with large gains of α ≈ 1.11 and β ≈ 20.7. In addition, 2D-HBT-based devices have been investigated as chemical sensors for the detection of NH3 and O2 gases at room temperature. The effects of different environments, such as air, vacuum, O2, and NH3, were also analyzed in dark conditions, and with a light of 633 nm wavelength, ultrahigh sensitivity and fast response and recovery times (6.55 and 16.2 ms, respectively) were observed. These unprecedented outcomes have huge potential in modern technology in the development of low-power amplifiers and gas sensors.Photocurrent production in quasi-one-dimensional (1D) transition-metal trichalcogenides, TiS3(001) and ZrS3(001), was examined using polarization-dependent scanning photocurrent microscopy. The photocurrent intensity was the strongest when the excitation source was polarized along the 1D chains with dichroic ratios of 41 and 1.21 for ZrS3 and TiS3, respectively. This behavior is explained by symmetry selection rules applicable to both valence and conduction band states. Symmetry selection rules are seen to be applicable to the experimental band structure, as is observed in polarization-dependent nanospot angle-resolved photoemission spectroscopy. Based on these band symmetry assignments, it is expected that the dichroic ratios for both materials will be maximized using excitation energies within 1 eV of their band gaps, providing versatile polarization sensitive photodetection across the visible spectrum and into the near-infrared.A hybrid energy-harvesting system is proposed that combines photosynthesis and photovoltaics. First, the light passes through a spectrally selective solar cell, which absorbs almost all green light but absorbs almost no blue and red light. The blue and red light are absorbed by a photosynthesis executing plant. The solar cell is tailored in such a way that the photosynthetic process is almost unaffected by the generation of electrical energy. The spectrally selective solar cell consists of an array of inorganic optical antennas. By combining a spectrally selective solar cell and a photosynthetic executing plant, a hybrid energy system is formed, which absorbs almost 100% of the visible light, while the energy conversion efficiency of the solar cell reaches up to 50% of their nonspectrally selective counterparts. Guidelines are provided on how to realize both the highly efficient spectrally selective solar cells and hybrid energy-harvesting systems. The proposed solution allows for the realization of new greenhouses or gardens covered with spectrally selective transparent solar cells that produce chemical energy in the form of fruits and vegetables and electrical energy.

Autoři článku: Dukelarson5069 (Newton Ochoa)