Padillakaya7015

Z Iurium Wiki

Verze z 16. 11. 2024, 16:45, kterou vytvořil Padillakaya7015 (diskuse | příspěvky) (Založena nová stránka s textem „Hericium erinaceus polysaccharides (HEPs) were isolated from the fruiting bodies of H. erinaceus with 53.36 % total carbohydrates and 32.56 % uronic acid.…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Hericium erinaceus polysaccharides (HEPs) were isolated from the fruiting bodies of H. erinaceus with 53.36 % total carbohydrates and 32.56 % uronic acid. To examine whether HEPs can alter the diversity and the abundance of gut microbiota, adult mice and middle-aged and old mice were fed with HEPs for 28 days. Based on the result of 16S sequencing of gut microbiota it was found that the relative abundances of Lachnospiraceae and Akkermansiaceae significantly increased, while the relative abundance of Rikenellaceae and Bacteroidaceae appeared to decrease. Bacterial solutions from different murine intestinal segments and feces were collected to ferment HEPs in vitro. It was found that HEPs remarkably promoted the production of NO, IL-6, IL-10, INF-γ and TNF-α. Moreover, HEPs significantly increased phosphorylation of signaling molecules, indicating that the immunomodulatory activity was completed via NF-кB, MAPK and PI3K/Akt pathways. Collectively, HEPs have potential to be developed as functional ingredients or foods to promote health.Chondroitin sulfate (CS) chains containing GlcUAβ1-3GalNAc(4S,6S) (E unit) have been shown to be involved in various physiological and pathological processes. However, commercial E unit-rich CS (CS-E) is difficult to produce on a large scale due to expensive and limited squid cartilage resources. In this study, a novel CS-E (CS-nE) was isolated from the cheap and abundant cartilage of the giant squid Dosidicus gigas. The CS-nE has a surprisingly large molecular mass of 696 kDa and a relatively high E unit proportion (44.5 %). It can interact with various growth factors, including HGF, bFGF, pleiotrophin, and HB-EGF, with high affinity, and exhibits dose-dependent anti-metastatic activity. Furthermore, the E unit-rich decasaccharide selectively prepared from CS-nE has been shown to be the minimal functional domain with the strongest antitumor metastatic activity. Taken together, CS-nE will be a very promising candidate for the development of CS-E-based pharmaceutical products.A fucosylated chondroitin sulfate was isolated from the body wall of sea cucumber Stichopus japonicus (FCSsj), whose structure was characterized by NMR spectroscopy and HILIC-FTMS. At the ratio of 1.000.260.65, three fucosyl residues were found 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S), which were only linked to the O-3 of glucuronic acid residues (GlcA). Besides mono-fucosyl moieties, di-fucosyl branches, namely Fuc2,4Sα(1→3)Fuc4S, were also found to be attached to the O-3 of GlcA. The antidiabetic activity of FCSsj was evaluated using glucosamine induced insulin resistant (IR) Hep G2 cells in vitro. It was found that FCSsj significantly promoted the glucose uptake and glucose consumption of IR-Hep G2 cells in a dose-dependent manner, and could alleviate the cell damage. Olitigaltin nmr Furthermore, FCSsj could promote the glycogen synthesis in the glucosamine-induced IR-Hep G2 cells. These results provided a supplement for studying the antidiabetic activity of FCSsj.Enzymatically rearranging α-1,4 and α-1,6 glycosidic bonds in starch is a green approach to regulating its digestibility. A two-step modification process successively catalyzed by 1,4-α-glucan branching enzymes (GBEs) from Rhodothermus obamensi STB05 (Ro-GBE) and Geobacillus thermoglucosidans STB02 (Gt-GBE) was investigated as a strategy to reduce the digestibility of corn starch. This dual GBE modification process caused a reduction of 25.8 % in rapidly digestible starch fraction in corn starch, which were more effective than single GBE-catalyzed modification with the same duration. Structural analysis indicated that the dual GBE modified product contained higher branching density, more abundant short branches, and shorter external chains than those in single GBE-modified product. These results demonstrated that a moderate Ro-GBE treatment prior to starch gelatinization caused several suitable alterations in starch molecules, which promoted the transglycosylation efficiency of the following Gt-GBE treatment. This dual GBE-catalyzed modification process offered an efficient strategy for regulating starch digestibility.Cellulose derived carbon aerogel (CA) with unique three-dimensional network coated with polyaniline (PANI) on its surface is used as a scaffolding framework to anchor ZIF-8. The designed ZIF-8 derived porous carbon (ZC)/PANI@CA (ZPCA) hybrid carbon composite through a facile solution immersion chemical route and subsequent carbonization process is employed as electrode for supercapacitor, which has contributed a large specific surface area, a hierarchical porous structure and reasonable N content (up to 6.27 at.%). The synthesized ZPCA electrode achieves an outstanding capacitance of 388 F g-1 at 0.5 A g-1 as well as an excellent cycling performance. More inspiringly, the symmetric supercapacitor based ZPCA achieves a high energy density of 13.4 Wh kg-1 at a power density of 250 W kg-1 using 2 M KOH aqueous solution, and an ultrahigh energy density of 81.8 Wh kg-1 at a power density of 950 W kg-1 is realized using Et4NBF4/AN electrolyte.Over the last few years, the focus of researchers have been set on enzyme engineering and enzyme immobilization technology using natural polysaccharides as promising and green supporting materials to address the challenges of free enzymes for various applications. Polysaccharides have been extensively implemented as enzyme carriers because they can be easily modified chemically according to the nature of immobilization. This process improves the stability and lifetime of laccase in catalytic reactions. Additionally, the selectivity of the enzymes can be preserved for particular application after immobilization onto polysaccharides. This review paper reveals the significance and potential of natural polysaccharides (including cellulose, chitosan, and alginate) and their composites as support materials for the laccases immobilization to expand the modified biocatalysts for industrial applications. Moreover, the roles of immobilized laccases are discussed from a fundamental point of view to elucidate their catalytic mechanisms as biocatalysts in the detection and degradation of environmental contaminants.

Autoři článku: Padillakaya7015 (Barton Santos)