Nixonchambers6582
e. associated with 3 to 4 different supramolecular assemblies (micelles), irrespective whether buffer or fasted state simulated intestinal fluid (FaSSIF) were used as dispersion media. YC-1 In contrast, ABT-199/40 showed pronounced formation of a wide variety of supramolecular assemblies (micelles) along with substantial association of the drug with all of these, but reduced glass liquid phase separation.Irbesartan is a poorly soluble BCS class II compound with weak acidic properties. After oral administration, dual peaks are noted in its concentration (C) - time (t) profile, a phenomenon that may be attributed to enterohepatic recirculation, gastric emptying and/or other absorption complexities related to its pH- and buffer capacity-dependent dissolution behavior. A population pharmacokinetic model, encompassing delay differential equations, was found the most appropriate approach to describe dual peaks in irbesartan's C-t profiles. Parameters estimated were the absorption rate constant in the central compartment (ka = 0.304 h-1), the constant time delay between the administration and the absorption (T=1.68 h), the apparent volume of distribution of the central (V1/F = 13.8 L) and peripheral (V2/F = 85.8 L) compartment, the apparent clearance from the central compartment (CL/F = 13.5 L/h), and the inter-compartmental clearance (Q/F = 17.7 L/h). Using simulations, it was made evident that changing the time delay results in significant changes of peak plasma concentrations but not of its blood pressure-lowering effect. In conclusion, delay differential equations may be useful to model dual peaks arising from absorption complexities, while changes of the time delay that reflect physiological processes that take place before absorption may have significant implications in proving bioequivalence.The presence, biosynthesis and functional role of sterols in the green microalga Haematococcus pluvialis remain poorly understood. In this work we studied the effect of high-light (HL) stress on sterol synthesis in H. pluvialis UTEX 2505 cells. HL stress induced the synthesis of sterols in parallel with that of triacylglycerides (TAG), giving rise to the synthesis of cholesterol over that of phytosterols. Blockage of the carotenogenic 1-deoxy-D-xylulose 5-phosphate (MEP) pathway is shown to be involved in HL-induced sterol synthesis. In addition, high irradiance exposure induced MEP- and fatty acid (FA)-biosynthetic transcripts. The pharmacological inhibition of these pathways suggests a possible feedback regulation of sterol and FA homeostasis. Finally, both lipid classes proved crucial to the adequate photosynthetic performance of H. pluvialis grown under HL intensity stress. Our findings reveal new insights into H. pluvialis lipid metabolism that contribute to the development of value-added bioproducts from microalgae.
Elevations in pancreatic α-cell intracellular Ca
([Ca
]
) lead to glucagon (GCG) secretion. Although glucose inhibits GCG secretion, how lactate and pyruvate control α-cell Ca
handling is unknown. Lactate enters cells through monocarboxylate transporters (MCTs) and is also produced during glycolysis by lactate dehydrogenase A (LDHA), an enzyme expressed in α-cells. As lactate activates ATP-sensitive K
(K
) channels in cardiomyocytes, lactate may also modulate α-cell K
. Therefore, this study investigated how lactate signaling controls α-cell Ca
handling and GCG secretion.
Mouse and human islets were used in combination with confocal microscopy, electrophysiology, GCG immunoassays, and fluorescent thallium flux assays to assess α-cell Ca
handling, V
, K
currents, and GCG secretion.
Lactate-inhibited mouse (75±25%) and human (47±9%) α-cell [Ca
]
fluctuations only under low-glucose conditions (1mM) but had no effect on β- or δ-cells [Ca
]
. Glyburide inhibition of K
channels restorethin α-cells and/or elevated in serum could serve as important modulators of α-cell function.Latent sensitization is a model of chronic pain in which a persistent state of pain hypersensitivity is suppressed by opioid receptors, as evidenced by the ability of opioid antagonists to induce a period of mechanical allodynia. Our objective was to determine if substance P and its neurokinin 1 receptor (NK1R) mediate the maintenance of latent sensitization. Latent sensitization was induced by injecting rats in the hindpaw with complete Freund's adjuvant (CFA), or by tibial spared nerve injury (SNI). When responses to von Frey filaments returned to baseline (day 28), the rats were injected intrathecally with saline or the NK1R antagonist RP67580, followed 15 min later by intrathecal naltrexone. In both pain models, the saline-injected rats developed allodynia for 2 h after naltrexone, but not the RP67580-injected rats. Saline or RP67580 were injected daily for two more days. Five days later (day 35), naltrexone was injected intrathecally. Again, the saline-injected rats, but not the RP67580-injected rats, developed allodynia in response to naltrexone. To determine if there is sustained activation of NK1Rs during latent sensitization, NK1R internalization was measured in lamina I neurons in rats injected in the paw with saline or CFA, and then injected intrathecally with saline or naltrexone on day 28. The rats injected with CFA had a small amount of NK1R internalization that was significantly higher than in the saline-injected rats. Naltrexone increased NK1R internalization in the CFA-injected rats but nor in the saline-injected rats. Therefore, sustained activation of NK1Rs maintains pain hypersensitivity during latent sensitization.Accumulating evidence suggests a widespread role of serotonin 5-HT7 receptors (5-HT7Rs) in the physiology of cognitive and affective processing. However, we still lack insights into 5-HT7R electrophysiology. Studies analyzing the 5-HT7R-mediated changes in CA1 pyramidal neuron activity revealed that 5-HT7R activation leads to the opening of hyperpolarization-activated cyclic nucleotide-gated cation channels (HCNs). However, our group and others have shown that CA1 pyramidal cells increase their excitability following 5-HT7R activation, an effect which cannot be explained by HCN channel opening. This suggests a different ionic mechanism might be responsible. To investigate this, we performed whole-cell patch clamp recordings of CA1 pyramidal cells in rat brain slices. It was found that acute 5-HT7R activation increased membrane excitability and decreased spiking latency. Both effects were blocked by a selective 5-HT7R antagonist. Spike latency in CA1 pyramidal cells is known to be regulated by transient outward voltage-dependent A-type potassium channels.