Borksparks1455

Z Iurium Wiki

Verze z 16. 11. 2024, 16:26, kterou vytvořil Borksparks1455 (diskuse | příspěvky) (Založena nová stránka s textem „Volcanic activity is one of the main sources of natural nanoparticles. It has been found earlier that the concentration of toxic metals/metalloids in nanop…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Volcanic activity is one of the main sources of natural nanoparticles. It has been found earlier that the concentration of toxic metals/metalloids in nanoparticles of volcanic ash may be one or two orders of magnitude higher than in bulk sample. However, fate and behavior of toxic metals/metalloids depend on the type of their binding to nanoparticles. Hence, element species adsorbed onto pyroclastic nanoparticles and individual nanophases of metal/metalloid oxides or salts should be distinguished. For the first time, the single particle inductively coupled plasma mass spectrometry has been applied to the nanospeciation of volcanic particles. Ashes of four volcanoes of Kamchatka (Russia) were under study. Nanoparticles were separated from bulk ash samples using coiled-tube field-flow fractionation. It has been shown that the nanospeciation of Ni, Zn, Ag, Cd, Tl, As, Pb, Bi, Te, and Hg is dependent on element and volcano. In most cases these elements can be found both as species absorbed onto pyroclastic nanoparticles and as individual nanophases. The ratios of individual nanophases and adsorbed species vary with the sample. In nanoparticles of Tolbachik volcano ash, Ni, Zn, Tl, and Hg are present only as individual nanophases, while Bi, As, Pb, Ag, Cd, and Te are found both as adsorbed species and individual nanophases. The results obtained open a new door into study on the chemical composition of volcanic ash nanoparticles and their fate in the environment.To investigate the bioaccumulation behavior of dodecamethylcyclohexasiloxane (D6, CAS number 540-97-6) in fish, an OECD-305 style dietary bioaccumulation study of D6 in rainbow trout was conducted in the presence of non-metabolizable reference chemicals. The dietary uptake absorption efficiency of D6 was 14 (3 SE) % and lower than that of the reference chemicals which ranged between 22 (2 SE) to 60 (8 SE) %. The concentration of D6 in the body of the fish showed a rapid 40% drop during the first day of the depuration phase, followed by a slower decline during the remainder of the depuration period. The overall depuration rate constant of D6 was 0.016 (0.0026 SE) d-1 and significantly greater than those of PCB153 and PCB209, which were not significantly different from zero. During the depuration phase, when fish body weight did not significantly change over time, depuration of D6 appears to be almost entirely due to biotransformation in the body of the fish. The biomagnification factor of D6 in rainbow trout was 0.38 (0.14 SE) kg-lipid kg-lipid-1, indicating a lack of biomagnification. The bioconcentration factor (BCF) of D6 in Rainbow trout was estimated at 1909 (483 SE) L kg-1 wet for natural waters of mostly oligotrophic lakes in Northern Canada with an average concentration of total organic carbon of 7.1 mg L-1. Comparing the bioaccumulation profile of D6 to that of 238 similar profiles for 166 unique chemicals indicates that the bioaccumulation capacity of D6 is markedly less than that of many very hydrophobic organochlorines.A novel Si-Mn binary modified biochar composite material (SMBC) was prepared after being sintered 450 °C for 2 h. The crystal structure, surface functional groups, surface morphology and element composition, specific surface area and pore structure were characterized by XRD, FTIR, XPS, SEM + EDS and BET etc. selleck compound The results showed that the surface of SMBC was rough and loose, and the specific surface area increased to 35.4284 m2/g. Si and Mn were uniformly attached to the surface of biochar in the form of SiO2, MnOx, MnSiO3. Batch adsorption experiments showed that SMBC had a higher removal efficiency (139.06 mg/g, above 98%) for Cu(II) when the dosage was 2 g/L and pH = 6. The cycle experiments showed that SMBC had good reusability, and its regeneration efficiency still reached 80.24%. The leaching amount of Mn (0.65 mg/L) was greatly reduced and avoid second-pollution resulted from ion exchange, which was attributed to the existence of Si-O-Mn bonds, and they could help Mn adhere to the surface of biochar more stable. The adsorption process was dominated by single-layer chemical adsorption and mainly occurred in the membrane diffusion stage. Cu(II) mainly formed -COOCu, -OCu, Cu(OH)2, Cu(OH)2CO3, Si-O-Cu, Mn-O-Cu by the mechanisms such as precipitation (4.74%), ion exchange (13.81%), complexation and physical adsorption (total 81.45% of the two mechanisms). Among them, complexation was dominant in the adsorption process.The global spread of mobilized colistin resistance (mcr) genes in clinical and natural environments dangerously diminishes the effectiveness of this last-resort antibiotic, becoming an urgent health threat. We used a multidisciplinary approach to detect mcr-1 gene and colistin (CL)-resistant bacteria in seawater from two Croatian public beaches. Illumina-based sequencing of metagenomic 16S rRNA was used to assess the taxonomic, functional, and antibiotic resistance genes (ARGs) profiling of the bacterial community tolerant to CL regarding different culture-based isolation methodologies. Data revealed that the choice of methodology alters the diversity and abundance of taxa accounting for the CL-resistance phenotype. The mcr-1 gene was identified by cloning and sequencing in one sample, representing the first report of mcr-1 gene in Croatia. Culturing of CL-resistant strains revealed their resistance phenotypes and concurrent production of clinically significant β-lactamases, such as CTX-M-15, CTX-M-3 and SHV-12. We also report the first identification of blaCTX-M-15 gene in Klebsiella huaxiensis and K. michiganensis, as well as the blaTEM-1+CTX-M-3 in Serratia fonticola. ARGs profiles derived from metagenomic data and predicted by PICRUSt2, showed the highest abundance of genes encoding for multidrug efflux pumps, followed by the transporter genes accounting for the tetracycline, macrolide and phenicol resistance. Our study evidenced the multidrug resistance features of CL-tolerant bacterial communities thriving in surface beach waters. We also showed that combined application of the metagenomic approaches and culture-based techniques enabled successful detection of mcr-1 gene, which could be underreported in natural environment.

Autoři článku: Borksparks1455 (Hooper Middleton)