Lepike2638

Z Iurium Wiki

Verze z 16. 11. 2024, 13:11, kterou vytvořil Lepike2638 (diskuse | příspěvky) (Založena nová stránka s textem „The terrestrial crustacean Porcellio scaber (Crustacea Isopoda) is an established invertebrate model in environmental research. Preceding research using is…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The terrestrial crustacean Porcellio scaber (Crustacea Isopoda) is an established invertebrate model in environmental research. Preceding research using isopods did not widely use immune markers. In order to advance their use in research, knowledge of the reference values in control animals as well as variations during infections is of importance. This study presents, for the first time, the morphology, and ultrastructure of the three main haemocyte types of Porcellio scaber as semigranulocytes (SGCs), granulocytes (GCs), and hyalinocytes (HCs), with the latter having two subtypes, using various light and electron microscopy approaches. The modulation of selected immune cellular and humoral parameters of P. scaber in symptomatic phases of Rhabdochlamydia porcellionis and Iridovirus IIV-31 infections is presented. A clear difference in the immune responses of bacterial and viral infections was shown. Remarkable changes in total haemocyte count (THC) values and the proportions of three different haemocyte types were found in animals with a viral infection, which were not as significant in bacterially infected animals. Modified NO levels and SOD activity were more pronounced in cases of bacterial infection. Knowledge of the morphological and ultrastructural features of distinct haemocyte types, understanding the baseline values of immune parameters in control animals without evident symptoms of infection, and the influence that infections can have on these parameters can serve as a basis for the further use of P. scaber immune markers in environmental research.Edwardsiella ictaluri (E. ictaluri) is one of the main bacterial pathogens in catfish which has caused serious economic loss to yellow catfish (Pelteobagrus fulvidraco) in China. In our previous work, we demonstrated that CypA was up-regulated at the early stage of E. ictaluri infection in yellow catfish and displayed strong chemotactic activity for leukocytes in vitro. However, the effect of CypA on E. ictaluri is unknown in vivo. Therefore, two homozygous transgenic zebrafish lines expressing yellow catfish CypA (TG-CypA-1 and TG-CypA-2) were generated. After challenged with E. ictaluri at a dose of 1.0 × 104 CFU per adult fish, both two transgenic lines exhibited a higher resistance to bacterial infection than the wildtype zebrafish. Herein, CypA gene in E. ictaluri-challenged yellow catfish was screened for presence of polymorphisms by sequencing and six single nucleotide polymorphisms (SNPs) were identified. SNP association analysis revealed that 528T/C SNP in the first intron was significantly different in disease-susceptible and -resistant groups, which was confirmed in two independent populations of yellow catfish. Moreover, the relative expression of CypA in the resistant group (CC genotype in 528T/C SNP) was significantly higher than that in the susceptible group (TT genotype in 528T/C SNP) in different immune organs of yellow catfish including spleen, head kidney, body kidney and liver. Our results reveal the potential function of CypA in host defense to bacterial infection and suggest the SNP marker in CypA gene associated with the resistance to E. ictaluri may facilitate the selective breeding of disease-resistant yellow catfish in the future.Lysozymes play a key role in innate immune response to bacterial pathogens, catalyzing the hydrolysis of the peptidoglycan layer of bacterial cell walls. selleck compound In this study, the genes encoding the c-type (TmLyzc) and g-type (TmLyzg) lysozymes from Totoaba macdonaldi were cloned and characterized. The cDNA sequences of TmLyzg and TmLyzc were 582 and 432 bp, encoding polypeptides of 193 and 143 amino acids, respectively. Amino acid sequences of these lysozymes shared high identity (60-90%) with their counterparts of other teleosts and showed conserved functional-structural signatures of the lysozyme superfamily. Phylogenetic analysis indicated a close relationship with their vertebrate homologues but distinct evolutionary paths for each lysozyme. Expression analysis by qRT-PCR revealed that TmLyzc was expressed in stomach and pyloric caeca, while TmLyzg was highly expressed in stomach and heart. These results suggest that both lysozymes play important roles in defense of totoaba against bacterial infections or as digestive enzyme.In mammals, tripartite motif (TRIM)-containing proteins are involved in interferon (IFN)-mediated antiviral response as pivotal players endowed with antiviral effects and modulatory capacity. Teleost fish have a unique subfamily of TRIM, called finTRIM (fish novel TRIM, FTR) generated by genus- or species-specific duplication of TRIM genes. Herein, four TRIM genes are identified from Epithelioma papulosum cyprini (EPC) cells, and phylogenetically close to the members of finTRIM, thus named FTREPC1, FTREPC2, FTREPC3 and FTREPC4. Despite high similarity in nucleotide sequence, FTREPC1/2 genes encode two proteins with a typically consecutive tripartite motif followed by a C-terminal B30.2 domain, while FTREPC3/4-encoding proteins retain only a RING domain due to early termination of translation. They are induced by poly(IC), GCRV and SVCV as IFN-stimulated genes (ISGs), and this induction is severely impaired by blockade of STAT1 pathway and is dependent on a typical ISRE motif within the 5' untranslated regions (5'UTRs) of FTREPC1/2/3/4 genes. Whereas overexpression of FTREPC1/2/3/4 alone does not activate fish IFN promoters, overexpression of FTREPC1 or FTREPC2, rather than FTREPC3 and FTREPC4, significantly impairs intracellular poly(IC)-triggered activation of fish IFN promoters. Consistently, FTREPC1/2 promote virus replication through negatively regulating IFN response. Our results provide evidence for the involvement of EPC finTRIM proteins in IFN antiviral response and insights into genus- or species-specific regulation of fish innate immune pathways.P65, the all-important subunit of the transcription factor NF-κB, plays an important role in the regulation of immune response. In this study, the cDNA of P65 subunit of rare minnow Gobiocypris rarus (GrP65) was cloned, and its expression patterns and functional role in rare minnow were investigated. The GrP65cDNA encodes a polypeptide of 573 amino acids, containing a well-conserved Rel-homology domain (RHD). The amino acid sequence analysis showed that GrP65 shared 81% and 69% identity to the grass carp (Ctenopharyngodon idella) and human (Homo sapiens) orthologous, respectively. Phylogenetic analysis revealed that GrP65 clustered with homologues from other teleosts. Cellular distribution anallysis demonstrated that GrP65 was located in the cytoplasm and nucleus. Quantitative real-time PCR analysis showed that GrP65 was ubiquitously expressed in all examined tissues, but especially highly in liver. Temporal expression analysis in vivo showed that the expression levels of GrP65 were significantly up-regulated in liver in response to GCRV infection, which suggested that GrP65 might play a crucial role in recognition and responses to GCRV infection in fish.

Autoři článku: Lepike2638 (Welch Heller)