Robbhusum4200
The concept of cognitive reserve proposes that specific life experiences result in more flexible or resilient cognitive processing allowing some people to cope better with age- or disease-related brain changes than others. Imaging studies seeking to understand the neural implementation of cognitive reserve have most often used task-related fMRI studies. Using that approach, we recently described a task-invariant cognitive-reserve network whose expression correlated with IQ and that moderated between cortical thickness and cognitive performance. Here we sought to identify a pattern of resting BOLD connectivity related to cognitive reserve. We identified a connectome pattern whose connectivity correlated with IQ in both the derivation sample and a separate replication sample. The majority of the edges showing positive relationships with IQ implicate frontal regions. In the derivation sample, connectivity either moderated the relationship between mean cortical thickness and a set of cognitive outcomes or accounted for unique variance in cognitive performance after accounting for cortical thickness. In a replication sample we found that expression of this connectome correlated significantly with the primary endpoint of IQ, and also accounted for unique variance in cognitive performance beyond cortical thickness. Our findings represent an intermediate level of replication and are unlikely to have arisen purely by type-I error. This connectivity pattern therefore meets some of our theoretical criteria for a cognitive reserve-related network and provides insight into the neural implementation of cognitive reserve. Further, expression of this connectome could potentially be used as a direct measure of cognitive reserve, and as an outcome measure for intervention studies that seek to influence cognitive reserve. Future validation of and re-derivation of the pattern in expanded data sets by our and other groups will lead to further improved estimates of cognitive reserve in resting functional connectivity.Benzoic acid (BA) was administered in the diet to male and female Sprague Dawley CrlCD(SD) rats in an OECD Test Guideline 443 Extended One-Generation Reproductive Toxicity (EOGRT) study to test for effects that may occur as a result of pre- and postnatal exposure. AM 095 The study included cohorts of F1 offspring to evaluate potential effects of benzoic acid on reproduction, the developing immune system, and the developing neurological system with the inclusion of learning and memory assessments. Benzoic acid was incorporated in the diet at concentrations of 0, 7,500, 11,500, and 15,000 mg/kg diet (ppm). These concentrations were selected based on the results of preliminary studies, and, based on average food consumption, were intended to supply BA doses of approximately 0, 500, 750, and 1000 mg/kg bw/day. To avoid exceeding these target dose levels, the dietary concentrations were adjusted (based on historical control body weight and food consumption data) to maintain the target mg/kg bw/day dose levels during thosmately 1000 mg/kg bw/day, was the NOAEL for benzoic acid in this EOGRT study.Rifampicin is one of the key drugs used to treat tuberculosis and is currently used orally. The use of higher oral doses of rifampicin is desired for better therapeutic efficacy, but this is accompanied by increased risk of systemic toxicity thus limiting its recommended oral dose to 10 mg/kg per day. Inhaled delivery of rifampicin is a potential alternative mode of delivery, to achieve high drug concentrations in both the lung and potentially the systemic circulation. In addition, rifampicin exists either as amorphous or crystalline particles, which may show different pharmacokinetic behaviour. However, disposition behaviour of amorphous and crystalline rifampicin formulations after inhaled high-dose delivery is unknown. In this study, rifampicin pharmacokinetics after intra-tracheal administration of carrier-free, amorphous and crystalline powder formulations to Sprague Dawley rats were evaluated. The formulations were administered once daily for seven days by oral, intra-tracheal and oral plus intra-tracheal delivery, and the pharmacokinetics were studied on day 0 and day 6. Intra-tracheal administration of the amorphous formulation resulted in a higher area under the plasma concentration curve (AUC) compared to the crystalline formulation. For both formulations, the intra-tracheal delivery led to significantly higher AUC compared to the oral delivery at the same dose suggesting higher rifampicin bioavailability from the inhaled route. Increasing the intra-tracheal dose resulted in a more than dose proportional AUC suggesting non-linear pharmacokinetics of rifampicin from the inhaled route. Upon repeated administration for seven days, no significant decrease in the AUCs were observed suggesting the absence of rifampicin induced enzyme auto-induction in this study. The present study suggests an advantage of inhaled delivery of rifampicin in achieving higher drug bioavailability compared to the oral route.Potential research outcomes on nanotechnology-based novel drug delivery systems since the past few decades attracted the attention of the researchers to overcome the limitations of conventional deliveries. Apart from possessing enhanced solubility of poorly water-soluble drugs, the targeting potential of the carriers facilitates longer circulation and site-specific delivery of the entrapped therapeutics. The practice of these delivery systems, therefore, helps in maximizing bioavailability, improving pharmacokinetics profile, pharmacodynamics activity and biodistribution of the entrapped drug(s). In addition to focusing on the positive side, evaluation of nanoparticulate systems for toxicity is a crucial parameter for its biomedical applications. Due to the size of nanoparticles, they easily traverse through biological barriers and may be accumulated in the body, where the ingredients incorporated in the formulation development might accumulate and/or produce toxic manifestation, leading to cause severe health hazards. Therefore, the toxic profile of these delivery systems needs to be evaluated at the molecular, cellular, tissue and organ level. This review offers a comprehensive presentation of toxicity aspects of the constituents of nanoparticular based drug delivery systems, which would be beneficial for future researchers to develop nanoparticulate delivery vehicles for the improvement of delivery approaches in a safer way.