Mccallknudsen0105

Z Iurium Wiki

Verze z 16. 11. 2024, 12:45, kterou vytvořil Mccallknudsen0105 (diskuse | příspěvky) (Založena nová stránka s textem „DPP8 and DPP9 have been demonstrated to play important roles in multiple diseases. Evidence for increased gene expression of DPP8 and DPP9 in tubulointerst…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

DPP8 and DPP9 have been demonstrated to play important roles in multiple diseases. Evidence for increased gene expression of DPP8 and DPP9 in tubulointerstitium was found to be associated with the decline of kidney function in chronic kidney disease (CKD) patients, which was observed in the Nephroseq human database. To examine the role of DPP8 and DPP9 in the tubulointerstitial injury, we determined the efficacy of DPP8 and DPP9 on epithelial-to-mesenchymal transition (EMT) and tubulointerstitial fibrosis (TIF) as well as the underlying mechanisms.

We conducted the immunofluorescence of DPP8 and DPP9 in kidney biopsy specimens of CKD patients, established unilateral ureteral obstruction (UUO) animal model, treated with TC-E5007 (a specific inhibitor of both DPP8 and DPP9) or Saxagliptin (positive control) or saline, and HK-2 cells model.

We observed the significantly increased expression of DPP8 and DPP9 in the renal proximal tubule epithelial cells of CKD patients compared to the healthy control subjects. DPP8/DPP9 inhibitor TC-E5007 could significantly attenuate the EMT and extracellular matrix (ECM) synthesis in UUO mice, all these effects were mediated via interfering with the TGF-β1/Smad signaling. TC-E5007 treatment also presented reduced renal inflammation and improved renal function in the UUO mice compared to the placebo-treated UUO group. Furthermore, the siRNA for DPP8 and DPP9, and TC-E5007 treatment decreased EMT- and ECM-related proteins in TGF-β1-treated HK-2 cells respectively, which could be reversed significantly by transduction with lentivirus-DPP8 and lentivirus-DPP9.

These data obtained provide evidence that the DPP8 and DPP9 could be potential therapeutic targets against TIF.

These data obtained provide evidence that the DPP8 and DPP9 could be potential therapeutic targets against TIF.Efforts to develop STAT3 inhibitors have focused on its SH2 domain starting with short phosphotyrosylated peptides based on STAT3 binding motifs, e.g. pY905LPQTV within gp130. Despite binding to STAT3 with high affinity, issues regarding stability, bioavailability, and membrane permeability of these peptides, as well as peptidomimetics such as CJ-887, have limited their further clinical development and led to interest in small-molecule inhibitors. Some small molecule STAT3 inhibitors, identified using structure-based virtual ligand screening (SB-VLS); while having favorable drug-like properties, suffer from weak binding affinities, possibly due to the high flexibility of the target domain. We conducted molecular dynamic (MD) simulations of the SH2 domain in complex with CJ-887, and used an averaged structure from this MD trajectory as an "induced-active site" receptor model for SB-VLS of 110,000 compounds within the SPEC database. Screening was followed by re-docking and re-scoring of the top 30% of hits, selection for hit compounds that directly interact with pY + 0 binding pocket residues R609 and S613, and testing for STAT3 targeting in vitro, which identified two lead hits with good activity and favorable drug-like properties. Unlike most small-molecule STAT3 inhibitors previously identified, which contain negatively-charged moieties that mediate binding to the pY + 0 binding pocket, these compounds are uncharged and likely will serve as better candidates for anti-STAT3 drug development. IMPLICATIONS SB-VLS, using an averaged structure from molecular dynamics (MD) simulations of STAT3 SH2 domain in a complex with CJ-887, a known peptidomimetic binder, identify two highly potent, neutral, low-molecular weight STAT3-inhibitors with favorable drug-like properties.Atherosclerosis is now the major cause of mortality and morbidity worldwide. Formation of macrophage-derived foam cells is a hallmark of atherosclerosis, which is regulated by cholesterol uptake, intracellular metabolism, and efflux. PPARγ-LXRα-ABCA1/ABCG1 pathway plays an important part in regulating cholesterol efflux and this pathway could be a promising target for treating atherosclerosis. However, due to undesirable systemic effects, PPARγ agonist therapy for atherosclerosis remains challenging. Many traditional Chinese medicine has been well accepted and applied in atherosclerosis treatment. Yin-xing-tong-mai decoction (YXTMD) has been applied for treating atherosclerosis for decades. However, the mechanism remains to be explored. Here, we showed that YXTMD effectively attenuated atherosclerosis in ApoE-/- mice. YXTMD increased cholesterol efflux of foam cell by upregulation of ABCA1 and ABCG1 in vivo and in vitro. Through bioinformatic analysis and experimental validation, we found that PPARγ was an important downstream effector of YXTMD in macrophages. Reduction of PPARγ significantly decreased LXRα, ABCA1, and ABCG1 expression in macrophages, with reduced cholesterol efflux. In conclusion, these findings confirmed that YXTMD attenuated atherosclerosis by activating the PPARγ-LXRα- ABCA1/ABCG1 pathway to enhance cholesterol efflux.Proparacaine (PPC) is a previously discovered topical anesthetic for ophthalmic optometry and surgery by blocking the central Nav1.3. In this study, we found that proparacaine hydrochloride (PPC-HCl) exerted an acute robust antiepileptic effect in pilocarpine-induced epilepsy mice. More importantly, chronic treatment with PPC-HCl totally terminated spontaneous recurrent seizure occurrence without significant toxicity. Selleck ASN-002 Chronic treatment with PPC-HCl did not cause obvious cytotoxicity, neuropsychiatric adverse effects, hepatotoxicity, cardiotoxicity, and even genotoxicity that evaluated by whole genome-scale transcriptomic analyses. Only when in a high dose (50 mg/kg), the QRS interval measured by electrocardiography was slightly prolonged, which was similar to the impact of levetiracetam. Nevertheless, to overcome this potential issue, we adopt a liposome encapsulation strategy that could alleviate cardiotoxicity and prepared a type of hydrogel containing PPC-HCl for sustained release. Implantation of thermosensitive chitosan-based hydrogel containing liposomal PPC-HCl into the subcutaneous tissue exerted immediate and long-lasting remission from spontaneous recurrent seizure in epileptic mice without affecting QRS interval. Therefore, this new liposomal hydrogel formulation of proparacaine could be developed as a transdermal patch for treating epilepsy, avoiding the severe toxicity after chronic treatment with current antiepileptic drugs in clinic.

Autoři článku: Mccallknudsen0105 (Kenny Gomez)