Newellwinther0640
However, the NEEms measured during the drainage period decreased significantly due to the stimulated soil respiration. The NEEms decreased with increasing salinity (except under mild salinity), and waterlogging exacerbated the adverse impacts of salinity. The amplificatory effect of decreases in both leaf photosynthesis and growth under hydrological stresses contributed more to reduce the NEEms than to respiratory effluxes. Both waterlogging and increased salinity reduced the root biomass, soil microbial biomass, and activities of assayed soil enzymes (except for cellulase under waterlogging conditions), leading to limited soil respiration. The declines in plant growth, photosynthesis, and soil respiration could also be attributed to the decrease in soil nutrients under waterlogging and increased salinity conditions. We propose that the coupling of SLR-driven hydrological effects lowers the capacity of CO2 uptake in subtropical coastal marshes.Drylands are experiencing an overall increase in aridity that is predicted to intensify in the future due to climate change. This may cause changes in the structure and functioning of dryland ecosystems, affecting ecosystem services and human well-being. Therefore, detecting early signs of ecosystem change before irreversible damage takes place is important. Thus, here we used a space-for-time substitution approach to study the response of the plant community to aridity in a Tropical dry forest (Caatinga, Brazil), and infer potential consequences of climate change. We assessed plant functional structure using the community weighted mean (CWM) and functional diversity, measured through functional dispersion (FDis), along a 700 km climatic gradient. We studied 13 functional traits, reflecting strategies associated with establishment, defense, regeneration, and dispersal of the most abundant 48 plant species in 113 sampling sites. Spearman correlations were used to test the relation between aridity and single-trait functional metrics. Aridity was a major environmental filter of the plant community functional structure. We found a higher abundance of species with deciduous leaves, zoochorous dispersal, fleshy fruits, chemical defense exudation and spinescence, and crassulacean acid metabolism towards more arid sites, at the expense of species with evergreen and thicker leaves, autochory dispersal, and shrub growth-form. Ipilimumab purchase The FDis of leaf type and thickness decreased with aridity, whereas FDis of fruit type, photosynthetic pathway, and defense strategies increased. Our findings provide functional indicators to early detect climate change impacts on Caatinga structure and functioning, to timely adopt preventive measures (e.g. conservation of forest remnants) and restoration actions (e.g. introduction of species with specific functional traits) in this threatened and unique ecosystem.Drinking water supplied by private wells is a national concern that would benefit from improved outreach and support to ensure safe drinking water quality. In North Carolina (NC), local health departments (LHDs) have private well programs that enforce statewide well construction standards, offer water testing services, and provide well water outreach and assistance. Programs were evaluated to determine their capacity and capability for well water outreach and assistance and identify differences among programs. All LHDs reported overseeing the construction of new wells as required by law. However, services provided to existing well users were offered infrequently and/or inconsistently offered. Lack of uniformity was observed in the number of LHD staff and their assigned responsibilities; the costs and availability of well water testing; and the comfort of LHD staff communicating with well owners. While the total number of staff was lower in LHDs in rural counties, the number of outreach activities and services offered was typically not related to the number of well users served. Variations in structure and capacity of well programs at LHDs have created unequal access to services and information for well users in NC. This research underscores the need to examine infrastructure that supports the well water community on a national scale.Scale-up feasibility of the graphitized sand filter (GS1) for Microcystin-LR (MC-LR) removal and its impact on other water pollutants (WPs) was assessed through a mass-balance study, using a laboratory-based drinking water treatment plant (DWTP) micromodel named SAP-1©. The treatment system comprised raw water tank, pre-oxidation tank (oxidant potassium permanganate), followed by a coagulation/flocculation tank (alum supplemented), sedimentation tank, filtration module and finally disinfection tank (dosed with hypochlorite solution). Two filter modules (FMs) were studied a) FM1 graphitized-sand media + sand media = ½ GS1 + ½ sand and b) FM2 ½ sand + ½ sand. The MC-LR removal study (initial concentration 50 μg/L) was performed for two varieties of MC-LR source a) commercial MC-LR, and b) algal-biomass released MC-LR. Along with MC-LR, other WPs were also evaluated including metal ions (Fe2+ and Cu2+), total coliform, turbidity, ammonia-N and dissolved organic carbon. The removal efficiency of these WPs was determined for each treatment unit (as it passed). FM1 was able to reduce the inflow residual of MC-LR (coming from the preceding unit sedimentation unit) from 12.1 μg/L and 25.4 μg/L (for commercial and algal-cell MC-LR source, respectively) to less then 0.61 μg/L and hence successfully complying the WHO guidelines ( less then 1 μg/L). The protein phosphatase 1A (PP1A) toxicity assay confirmed a much safer and more toxic-free filtrate (by 40%-50%) for FM1 as compared to the filtrate obtained from FM2. The techno-economic evaluation showed that for an annual household filter application, 160 CAD needs to be spent on one GS1-based filter unit as compared to over 6000 CAD (equivalent price) for the conventional sand-based filter to provide MC-LR-free water. The present study demonstrates the feasibility of the utilization of these units in household filtration systems.Fecal contamination is observed downstream of municipal separate storm sewer systems in coastal North Carolina. While it is well accepted that wet weather contributes to this phenomenon, less is understood about the contribution of the complex hydrology in this low-lying coastal plain. A quantitative microbial assessment was conducted in Beaufort, North Carolina to identify trends and potential sources of fecal contamination in stormwater receiving waters. Fecal indicator concentrations were significantly higher in receiving water downstream of a tidally submerged outfall compared to an outfall that was permanently submerged (p less then 0.001), though tidal height was not predictive of human-specific microbial source tracking (MST) marker concentrations at the tidally submerged site. Short-term rainfall (i.e. less then 12 h) was predictive of E. coli, Enterococcus spp., and human-specific MST marker concentrations (Fecal Bacteroides, BacHum, and HF183) in receiving waters. The strong correlation between 12-hr antecedent rainfall and Enterococcus spp.